Large-Eddy
Simulations
of Turbulence

Marcel Lesieur
Olivier Métais
Pierre Comte

maore information - www.cambridge.org/9780521781244




This page intentionally left blank



LARGE-EDDY SIMULATIONS OF TURBULENCE

Large-Eddy Simulations of Turbulence is an ideal introduction for people new to
large-eddy simulation (LES), direct numerical simulation, and Reynolds-averaged
Navier—Stokes simulation and makes an excellent reference for researchers. Of
particular interest in the text is the detailed discussion in Chapter 2 of vorticity,
pressure, and the velocity gradient tensor, which are quantities useful for probing
the results of a simulation — particularly when looking for coherent vortices and
coherent structures. Chapters 4 and 5 feature an in-depth discussion of spec-
tral subgrid-scale modeling. Although physical-space models are generally more
readily applied, spectral models give insight into the requirements and limitations
in subgrid-scale modeling and backscattering. A third special feature is the de-
tailed discussion in Chapter 7 of LES of compressible flows — a topic previously
accessible only in articles scattered throughout the literature. This will be of in-
terest to those dealing with supersonic flows, combustion, astrophysics, and other
related topics. Chapter 8 focuses on geophysical fluid dynamics with emphasis on
rotating stratified shear flows. Interesting applications of LES to storm formation
are given in particular.

Marcel Lesieur, Olivier Métais, and Pierre Comte form the nucleus of the
Grenoble Equipe Modélisation et Simulation de la Turbulence (the Grenoble
team for modeling and simulating turbulence) and play an important role in the
development of subgrid-scale modeling of turbulent flows required for large-eddy
simulation and in the implementation of large-eddy simulation methodology in
research and applications. They were responsible for early research on spec-
tral subgrid-scale closure and the use of the closure approach in developing the
physical-space structure-function model. More recently they have made signif-
icant contributions to the development of modeling for compressible turbulent
flows.
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Preface

In 1949, in an unpublished report to the U.S. Office of Naval Research, John
von Neumann remarked of turbulence that

the great importance of turbulence requires no further emphasis. Turbulence
undoubtedly represents a central principle for many parts of physics, and a
thorough understanding of its properties must be expected to lead to advances
in many fields. ... [T]urbulence represents per se an important principle in
physical theory and in pure mathematics. . . . These considerations justify the
view that a considerable effort towards a detailed understanding of the mech-
anisms of turbulence is called for. .. .!

Few people today would disagree with these comments on the importance
of understanding turbulence and, as implied, of its prediction. And, although
the turbulence problem has still yet to be “solved,” our understanding of
turbulence has significantly advanced since that time; this progress has come
through a combination of theoretical studies, often ingenious experiments,
and judicious numerical simulations. In addition, from this understanding,
our ability to predict, or at least to model, turbulence has greatly improved;
methods to predict turbulent flows using large-eddy simulation (LES) are the
main focus of the present book.

The impact of von Neumann is still felt today in the prediction of turbulent
flows, both in his work on numerical methods and in the people and the
research he has influenced. The genesis of the method of large-eddy simulation
(or possibly more appropriately, “simulation des grandes échelles) was in the
early 1960s with the research of Joe Smagorinsky. At the time, Smagorinsky
was working in von Neumann’s group at Princeton, developing modeling for
dissipation and diffusion in numerical weather prediction. Doug Lilly, who
later worked with Smagorinsky, realized the potential for simulating turbulent
flows of Smagorinky’s modeling work. When Lilly joined the National Center

! Quote provided by Russell J. Donnelly.
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for Atmospheric Research (NCAR), he encouraged NCAR’s Jim Deardorff
to pursue this line of research; Deardorff later completed the first series of
LES, publishing his results in several important papers in the early 1970s. At
that time at NCAR, Doug Lilly, Chuck Leith, Jim Deardorff, and later Jack
Herring established a most stimulating environment for turbulence research.
In addition to these first large-eddy simulations and other research, such as
on the parameterization of boundary layer turbulence and studies of clear-air
turbulence, the first direct numerical simulations were carried out at NCAR
in that time period by Steve Orszag and Stu Patterson.

Research on large-eddy simulation is increasing rapidly as this methodol-
ogy takes its place as a valuable numerical simulation tool along with direct
numerical simulation and Reynolds-averaged Navier—Stokes simulation. As
an example of this, a very informal survey using the Science Citation Index
indicates that the number of archival papers with “large-eddy simulation” in
their titles has increased almost geometrically in the past decade or so from
11 1n 1990, to 25 in 1995, to 51 in 2000, and to 95 in 2003. In addition, with
continuing improvements in numerical methods and also in subgrid modeling
of turbulence, large-eddy simulation is being utilized more and more in ap-
plications. This can be seen, for example, in its implementation in most of the
commercially available fluid dynamics codes. Undoubtedly it will become a
principal tool in applications in the future.

This tremendous increase in the interest in, and of use of, LES demands
the availability of books that describe the theory and modeling aspects of LES
and that also give detailed examples of how it has been and can be applied.
Such was the task of the authors of this book.

The three authors of this book, Marcel Lesieur, Olivier Métais, and Pierre
Comte, who have formed the nucleus of the Grenoble Equipe Modélisation et
Simulation de la Turbulence (the Grenoble team for modeling and simulating
turbulence), are eminently qualified to write such a book. They have been very
active in many developments in subgrid modeling of turbulent flows required
for large-eddy simulation and also in the implementation of LES methodology
in research and applications. Among other things they have been responsible
for some of the first research on spectral subgrid-scale closure; using some
of the ideas from this closure approach they developed the physical-space
structure-function model, which has received considerable attention and use;
and more recently they have led in developing modeling for compressible
turbulent flows. Of course the readers will find out much more about their
contributions in this book.

This book contains the basic information required for both a person new
to the subject of large-eddy simulation and for use as a reference for the more
experienced researcher. In addition, it contains several additional items the
reader may find of special importance. The first of these items is contained in
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Chapter 2, where a detailed discussion is given of vorticity, pressure, and the
velocity gradient tensor, which are quantities useful for probing the results
of a simulation — in particular looking for coherent vortices and coherent
structures. Since the approach of large-eddy simulation focuses on the large-
scale motions, which are often coherent, it is important to have the appropriate
tools available to examine the simulations for such features.

Another item of special importance is the in-depth discussion of spec-
tral subgrid-scale modeling in Chapters 4 and 5. Although physical-space
models are generally more readily applied, the spectral models give more
insight into the requirements and limitations in subgrid-scale modeling and
related issues, such as backscattering. A third special item in the book is
its detailed discussion of the large-eddy simulation of compressible flows in
Chapter 7 — a subject to which the authors have made important recent con-
tributions, and information about which has, up till now, only been available
in articles scattered throughout the literature. This topic will be of interest not
only to those dealing with supersonic flows but also to those interested in com-
bustion, astrophysics, and other related topics. In the final chapter the authors
go back to the origins of large-eddy simulations and discuss applications to
problems in geophysical fluid mechanics. The reader will become acquainted
with examples of how large-eddy simulation can enable issues that are at such
high Reynolds numbers that they are available only to large-eddy simulation
to be addressed. Among the topics discussed are the effects of system rotation
on turbulence and the generation of storms through baroclinic instabilities.

To learn a new topic, it is often best to have available examples worked
out in some detail. One of the great merits of this book is that it is filled with
many examples often taken from the research of the authors. These examples
are supplemented by numerous animations, which are referenced at the end
of the appropriate chapters and are available on the accompanying CD-ROM.

The authors have succeeded exceptionally well in providing a book that
will be valuable for both the novice and the experienced user. The book will be
useful as a text or reference in graduate courses on large-eddy simulation, and
it should find a place on the reference shelf of both scientists and engineers who
have interest in large-eddy simulation. The book should become a significant
element in this rapidly developing field of turbulence simulation.

James J. Riley
June 2004

Xi






1 Introduction to LES

1.1 Book’s scope

Large-eddy simulations (LESs) of turbulent flows are extremely powerful
techniques consisting in the elimination of scales smaller than some scale Ax
by a proper low-pass filtering to enable suitable evolution equations for the
large scales to be written. The latter maintain an intense spatio-temporal vari-
ability. Large-eddy simulation (LES) poses a very difficult theoretical problem
of subgrid-scale modeling, that is, how to account for small-scale dynamics in
the large-scale motion equations. LES is an invaluable tool for deciphering the
vortical structure of turbulence, since it allows us to capture deterministically
the formation and ulterior evolution of coherent vortices and structures. It also
permits the prediction of numerous statistics associated with turbulence and
induced mixing. LES applies to extremely general turbulent flows (isotropic,
free-shear, wall-bounded, separated, rotating, stratified, compressible, chemi-
cally reacting, multiphase, magnetohydrodynamic, etc.). LES has contributed
to a blooming industrial development in the aecrodynamics of cars, trains, and
planes; propulsion, turbo-machinery; thermal hydraulics; acoustics; and com-
bustion. An important application lies in the possibility of simulating systems
that allow turbulence control, which will be a major source of energy sav-
ings in the future. LES also has many applications in meteorology at various
scales (small scales in the turbulent boundary layer, mesoscales, and synoptic
planetary scales). Use of LES will soon enable us to predict the transport and
mixing of pollution. LES is used in the ocean for understanding mixing due
to vertical convection and stratification and also for understanding horizontal
mesoscale eddies. LES should be very useful for understanding the genera-
tion of Earth’s magnetic field in the turbulent outer mantle and as a tool for
studying planetary and stellar dynamics.

Itis clear that the study of large-eddy simulations of turbulence has become
a discipline by itself. This book will try to present a global and complete



LARGE-EDDY SIMULATIONS OF TURBULENCE

account of this discipline and its vigorous developments since the early 1960s
and the pioneering work of Smagorinsky [269]. We will also provide various
industrial and environmental applications.

Although we do not expect the reader to be an expert in fluid dynamics and
turbulence, it is not the aim of the present book to give a complete account
of these aspects. We will try, however, to recall in simple terms some of them
while referring to the companion textbook of Lesieur [170] for the more
advanced aspects or detailed derivations on these topics.

The objective of the book is twofold. The first is to present the details of
many models developed in large-eddy simulations of turbulence. The second
is, through examples of application, to give the reader a thorough under-
standing of turbulence dynamics in isotropy, mixing layers, boundary lay-
ers, and separated flows and how such a dynamics may be deeply modified
by rotation, stratification, heating, and compressibility. The book contains
numerous computer-generated graphics as well as a CD-ROM with movies
of some flows computed with LES (isotropic turbulence, mixing layers and
jets, backward-facing steps, boundary layers and channel flows, cavities
at various Mach numbers, heated-channel flows, frontal cyclogenesis in the
atmosphere, etc.). This interdisciplinary textbook addresses a very wide pop-
ulation of graduate students, researchers, and industrial engineers in the
domains of mechanical, aerospace, civil, chemical, and nuclear engineer-
ing; geophysical and astrophysical fluid dynamics; physics; and applied
mathematics.

In the present chapter, we recall the basis of fluid-dynamics and turbulence
theory that will be used for LES. We show the limitations of direct numerical
simulations in terms of practical applications at high Reynolds numbers owing
to the excessive number of degrees of freedom of the system. We recall the
history of LES and finish with an analysis of unpredictability effects in the
framework of LES analyses.

In Chapter 2, we are mainly concerned with coherent-vortex recognition
in terms of pressure and vorticity fields as well as quantities related to the
velocity-gradient tensor, such as the very efficient O and A, criteria. Appli-
cations to isotropic turbulence and backward-facing steps are provided, and
animations of coherent vortices are observed in both cases.

Chapter 3 presents the LES formalism in physical space with the intro-
duction of the famous Smagorinsky model, for which we will show how the
constant may be determined. We will also study the model’s wall behavior,
which poses serious problems. We also present a thorough description of its
more recent so-called dynamic version with a dynamic recalculation of the
constant by a double filtering in space.

Chapter 4 presents spectral models for LES applied to three-dimensional
isotropic turbulence with the plateau-peak eddy viscosity and eddy diffusivity
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and the spectral-dynamic model. The chapter shows new EDQNM! calcula-
tions at very high Reynolds numbers with an analysis of the well-known phe-
nomenon of kinetic energy cascade pileup before the dissipative range (the
so-called bump). The chapter contains a complete infrared study of kinetic-
energy and pressure spectra done both with EDQNM and LES using the
spectral models. It also discusses other types of spectral eddy viscosities such
as Heisenberg’s and RNG-based.

Chapter 5 shows how the plateau-peak eddy-viscosity model may be ap-
plied to inhomogeneous turbulence in flows of uniform density in the partic-
ular cases of a temporal mixing layer, where it is able to reproduce a vortex
structure of quasi-two-dimensional Kelvin—Helmholtz vortices stretching
thin longitudinal hairpins, or dislocated Kelvin—Helmholtz vortices under-
going helical pairing, according to the quasi—two-dimensional or three-
dimensional nature of the initial forcing. A thorough LES study of the plane
channel using the spectral-dynamic model is carried out at various Reynolds
numbers. The study is complemented by direct numerical simulation (DNS)
focusing on probability density functions of various quantities, which are
discussed with respect to the vortical dynamics.

Chapter 6 presents new subgrid models, such as the structure-function
model and its “selective” and “filtered” versions. These models are compared
with Smagorinsky’s in the framework of a temporal mixing layer. They are
applied to a spatially growing mixing layer, where the influences of upstream
forcing and the extent of the spanwise domain are discussed. A round jet is
also looked at with alternate pairings of vortex rings qualitatively similar to
helical pairing in mixing layers. The jet control by upstream perturbations
of varicose, helical, or flapping types is studied, with possibilities of strongly
enhancing the spreading. The backstep is reconsidered statistically. Afterward
a dynamic version of the structure-function model is presented. We discuss
hyperviscosities as well as a mixed structure-function/hyperviscous model that
parallels in physical space the spectral plateau-peak model. We also present
scale-similarity and mixed models as well as some new, recent models.

Chapter 7 is devoted to LES of compressible ideal gases (neglecting grav-
ity effects). We work in the context of density-weighted Favre filters anal-
ogous to Favre density-weighted ensemble averages. We introduce a new
thermodynamic quantity, the macrotemperature, which may be related by an
equation of state to a macropressure. This greatly simplifies the LES formal-
ism for compressible flows. Afterward we discuss the compressible mixing
layer both in the temporal and spatial cases. The compressible round jet is

! The eddy-damped quasi-normal Markovian theory (EDQNM) is a very efficient statisti-
cal model of isotropic turbulence based on two-point closures, which will be presented in
more detail in Chapter 4. It also serves to determine subgrid models for spectral large-eddy
simulations.



LARGE-EDDY SIMULATIONS OF TURBULENCE

also studied both in the subsonic and supersonic cases. Jet contol by varico-
flapping excitations is studied. Then various LESs of low-Mach boundary
layers developing spatially upon a flat plate are presented both in the tran-
sitional and developed stages. Animations of various vortices and structures
are provided. A weakly compressible channel (one side of which contains
two small spanwise grooves) is also presented with animations of quasi-
longitudinal vortices traveling on both sides. We recall the main features and
role of longitudinal riblets equipping boats, planes, and swimming costumes
and discuss the influence of compressibility. Turbulence over a square cav-
ity and over a transonic rectangular cavity is studied. Then the structure of
turbulence in the neighborhood of the European Hermés space shuttle at a
local Mach number of 2.5 will be examined with evidence for the presence of
Gortler vortices. Finally, DNS and LES of a heated square duct will be looked
at. This duct may contain riblets, which increase heat transfer significantly.
A curved duct with one wall heated is also studied, and Gortler vortices are
recovered.

Chapter 8 is devoted to geophysical fluid dynamics with some DNS and
LES of relevance for this topic. We first present a review of geophysical flows
at various scales mainly for Earth’s atmosphere and oceans. We determine
the associated Rossby numbers. Climate issues such as global warming, the
ozone hole, El Nifo, and the oceanic conveyor belt are briefly discussed.
Afterward we study shear flows (free and wall-bounded) of uniform density
rotating about a spanwise axis. They are looked at mainly from the point of
view of DNS and LES, and we show a wide universality in the dynamics
of these flows. Then we present DNS and LES studies of the instability of
a baroclinic jet, showing that LES permits us to capture secondary instabil-
ities that are dissipated in DNS. We discuss possible analogies with severe
storms.

1.2 Basic principles of fluid dynamics

We work within the assumption of a continuous medium whose characteristic
scales of motion are several orders of magnitude larger (by a factor of 10* to
10°) than the mean free path of molecules characterizing the molecular scales.
Equations of fluid motion are obtained in the following way (see Batchelor
[17] and Lesieur [170]). We work in a frame that may be Galilean, or in solid-
body rotation of rotation vector €2, and consider a fluid parcel (of volume § ")
of size smaller than the characteristic scales in the flow. Let p be the density,
and let u# be the velocity of the parcel gravity center. One introduces the
operator D/Dt, the derivative following the fluid motion, which is equal to
9/0t + u - V if the flow quantities are expressed in terms of a given space
point X and time ¢ (Eulerian notations). Notice that we have, respectively, for
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any scalar A(X, t) and vector a(x, t)

DA _ 2 i % (1.1)
pr o " ’ '
Di 9d . -._ 0@ =-. _
— = VYi=—+V 1.2
Dr = 5 + @ -Va o +Va®u, (1.2)

where ® stands for a tensorial product. The three following principles are
applied to the parcel in its motion:

» conservation of mass (6m = p §V),
 Dbalance of forces (Newton’s first and third principles stated in 1687), and
e first principle of thermodynamics.

1.2.1 Continuity equation

The conservation of mass yields the continuity equation
1 D(@m) 1Dp 1 D(@V)
sm Dt  pDt 8V Dt

’

which yields
1 Dp
p Dt

The particular case of incompressibility (conservation of volumes following
the fluid motion) reduces to V - # = 0.

+V-i=0. (1.3)

1.2.2 Balance of forces

The balance of forces corresponds to the so-called Navier—Stokes equation.
It is obtained by equating the “acceleration quantity” §mDu/Dt to the
body forces plus the surface forces acting upon the external surface of the
parcel. The body forces applied are gravity, §m g, the Coriolis force (if
any), —2 ém Q x ii, and other possible forces. The gravity g is irrotational
and includes both the Newtonian gravity and the centrifugal force implied
by the frame rotation. One assumes the existence of a stress tensor & such
that the force exerted by the fluid on one side of a small surface d ¥ oriented
by a normal unit vector 7 is given by d f = o ® 7# d=. A Newtonian fluid
corresponds to a stress tensor of the form

ou; ou ; 25
= —Dp 8 — 4+ L )-Zv.us|, 1.4
Oij % j+'u|:<8xj+ 8x,~) VU /i| (1.4)

where the pressure is defined by p = —(1/3)0;;, and p is the dynamic viscosity
coefficient. Such a definition of pressure avoids the introduction of a second
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viscosity coefficient. After integration of the surface forces over the surface
of the fluid particle, we have
DZ/l,' 1 aO'l'j

—Lo@-2Qxi)y4——2 1.5
b = E =28+ T (1)

or, equivalently,

Du; R > 1 dp 1 0 ou; u; 25
— =@-2Qxu)y———+———pl|\—+—)—zV-ud;|.
Dt pox;  pox; ox;  0x; 3

(1.6)

Introducing the geopotential @ such that g = —V®, we can write the Navier—
Stokes equation as

- -2

9 . - - J = . S
8_Ltl +(@+2Q)xu=——Vp—-V <<I> + %) + vicous dissipation,
ol
(1.7)

where & = V x ii is the relative vorticity of the fluid (in the rotating frame)
and @, = @ + 2 Q is the absolute vorticity in the absolute frame. In Eq. (1.7),
the viscous contribution has not been explicitly specified.

1.2.3 Thermodynamic equation

A third equation is obtained by applying the first principle of thermodynamics
to the fluid parcel: The derivative of the total energy (internal, potential,
and kinetic) is equal to a possible heating (or cooling) rate by some source
(e.g., radiation, combustion, condensation, or evaporation of water in the
atmosphere), plus the power of surface forces, plus the rate of heat exchange
by molecular diffusion across the parcel surface. The latter is expressed with
the aid of Fourier’s law. More specifically, let e; be the internal energy per unit
mass. Then

1

o+ -v.ovn -2
Jo 3

§ﬁ+2v (SijSij_ SiiSjj) (1.8)
with S = [Vii 4+ Vii|']/2, O characterizing the forcing, and A being the ther-
mal conductivity. Let # = e; + (p/p) be the enthalpy of the fluid. From the
continuity equation, we have

D (p Dp R,
—|=)=—+4+pV-u, 1.9
th(p) p (1.9)
and from the enthalpy equation, omitting O, we write

Dh

Dp - - 1
— =—+V -(AVT)+2 S — =818 ). 1.1
th Di + ( )+ M(SJS/ 3S SJJ) (1.10)
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It can now easily be shown that by taking the scalar product of the momentum
equation (1.6) with # and adding the result to Eq. (1.10), we get

D 1., ap = > 1
P— h+—u +(D :E‘FV()\.VT)—FZM SijSij_ESiiSjj

Dt 2
+“iiﬂ [(% + %) — z%.ﬁgii] .
8XJ' ij 8xi 3 ’
(1.11)

Indeed the geopotential ® is time independent, and thus D®/Dt = u - V.
This gives us the generalized Bernoulli theorem stating that 4 + %ﬁz + ®isan
invariant of motion if the flow is time independent and if molecular diffusion
is neglected.

For a perfect barotropic fluid (i.e., p is a function of p only) where rotation
is neglected, the momentum equation reduces to

Du

oy =Vt ). (1.12)

Returning to the more general case, let us consider successively a liquid and
a gas.

* For a liquid, we have approximately e; = C,, T'. However, we can check
that the pressure and molecular viscous terms on the right-hand side (r.h.s.)
of Eq. (1.8) are in general negligible, and thus we have

~ T2 Dp

ENKV T, ENKV 0, (1.13)
where k = 1/p C,, is the thermal diffusivity.?

 Foranideal gas, the state equationreads p/p = RT (with R = C, — C,).
We make a further assumption of identifying this thermodynamic pressure
with the static pressure already introduced in the stress tensor. We suppose
also that C, and C, are temperature independent. We now have ¢; = C, T
Introducing the potential temperature

Do (y—D/y
=T (—) s (1.14)
p

where y = C,,/C, and p, is the pressure at some reference level, we write

2 Notice, however, that in Eq. (1.13) the density equation is obtained by assuming a linear
relation between p and T such that p is a decreasing function of 7. Because of mass
conservation this implies that, if 7 decreases, p will increase and the volume of the fluid
parcel will decrease. This is no longer true for water at temperatures close to 4 °C, where it
will dilate when cooled (Balibar [11]). In this case, pressure effects in Eq. (1.8) have to be
taken into account.
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the thermodynamic equation as
D® O
Dt C,T

= - 1
|:—V()\,VT)+2V (SijSij _§SiiSjj)]- (115)
o

A good approximation of this equation for subsonic flows is

D® ®

— ~k=V’T, (1.16)

Dt T
where the thermal diffusivity « has the same definition as before for the
liquid. We recall that if the motion is adiabatic (x = 0), ® is an invariant of
motion, as are both the entropy and p(§V)”. If the ideal gas is barotropic

(and perfect), it is isentropic.

Validation of these equations of motion comes from the very good compar-
ison of theoretical solutions with laboratory experiments in laminar regimes
for cases such as Poiseuille flow in a channel or a pipe, or boundary layers
developing over a flat plate, or mixing layers. In the turbulent regimes, first-
and second-order statistics of numerical solutions also compare favorably with
experiments for the same flows. Only above Mach numbers of the order of 15—
20 does the molecular-agitation scale catch up with the continuous-medium
scales in such a way that the continuous-medium assumption no longer holds.

The generalized Bernoulli theorem allows us to understand why a hyper-
sonic body heats during atmospheric reentry. Indeed, let us consider a frame
fixed to the body and suppose that an upstream fluid parcel is at a velocity
U and a temperature 7. Its enthalpy is C, 7. If the parcel hits the body,
on which the velocity is zero, neglecting gravity, we get

CpToo + %Uﬁo =C,T, (1.17)
where T, is the temperature at the wall, which is higher than T,, owing to
this exchange between kinetic energy and enthalpy. We will talk more of
this adiabatic temperature in the section of Chapter 7 devoted to LES of a
space-shuttle rear wing.

Let us finally consider Eq. (1.15) in the case of a compressible, paral-
lel time-independant flow of ideal gas. The velocity-vector components are
[u(y), 0, 0]. Let Pr = C,u(y)/A(y) be the Prandtl number assumed constant.

We have
d (dT\  Pr (du\’ (L18)
ay\"ay) T, M \ay) '

which shows there is a temperature gradient of molecular-diffusion origin in-
duced by the velocity gradient. This has analogies with the Crocco-Busemann
equation. In fact, such a velocity profile is only possible if the pressure p(x)
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Figure 1.1. Schematic view of a vortex sheet.

depends only on x; then the pressure gradient dp/dx is constant with

dp d du
— = pu—. 1.19
dx dy (Mdy) ( )

In the weakly compressible case, this yields a parabolic velocity profile if
dp/dx # 0 and a linear velocity profile if dp/dx = 0.

1.2.4 Vorticity

A very important quantity for characterizing turbulence (in the absense of en-
trainment rotation) is the vorticity vector @ = V x ii. A quasi-discontinuity
between two parallel flows of velocity (71 and (72 gives rise to a vortex sheet
(see Figure 1.1). The latter is violently unstable under small perturbations
(Kelvin—Helmholtz instability) and rolls up into spiral Kelvin—Helmholtz
vortices into which vorticity has concentrated. These vortices may undergo
secondary successive instabilities, leading to a violent direct kinetic-energy
cascade toward small scales; they may also be responsible for inverse en-
ergy cascades through pairings (see Lesieur [170], Chapter III). In practive,
Kelvin—Helmholtz-type instabilities are the source of turbulence in many hy-
drodynamic as well as external and internal aerodynamic applications. An
illustration is provided by the famous helium—nitrogen mixing-layer exper-
iment carried out at Caltech by Brown and Roshko [33] and presented in
Figure 1.2 (top). Figure 1.2 (bottom) shows a “numerical dye” (with the pas-
sive scalar of the upstream distribution proportional to the upstream veloc-
ity) in a two-dimensional numerical simulation of a uniform-density mixing
layer carried out in Grenoble by Normand [220]. We will return in detail to
these vortex-dynamic aspects in Chapter 5. Let us focus now on small-scale—
developed turbulence characteristics, which are very important to assess the
potential of direct numerical simulations of flows in terms of practical ap-
plications. This is why we devote a section to very useful spectral tools in
isotropic turbulence.
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Figure 1.2. (Top) Experimental mixing layer of Brown and Roshko. (Courtesy A. Roshko.)
(Bottom) Grenoble two-dimensional numerical simulation. (Courtesy X. Normand.)

1.3 Isotropic turbulence

1.3.1 Formalism

Isotropic turbulence is a model that may be relevant to small-scale—developed
turbulent flows. We assume an infinite domain without boundaries. Turbulent
quantities are represented by random functions for which averages are taken
on ensembles of realizations and are denoted ( ). Turbulence is assumed to be
statistically invariant under rotations about arbitrary axes (and hence transla-
tions). Thus the average velocity is zero. We restrict our attention to a flow
of uniform density. The easiest mathematical way to deal with such turbu-
lence is to use spatial Fourier space. Let us first introduce the spatial integral
Fourier transform of a given function (scalar or vector) f'(X, ¢) associated with
turbulence

7T 1y —ikX oz =
f(k,t):(g) /e * f(x,t)dx, (1.20)

where the integral is carried out over the entire three-dimensional space.
Because turbulence is statistically homogeneous, its fluctuations cannot be
expected to decrease at infinity. However, Eq. (1.20) does make sense in the
framework of generalized-functions theory (distributions). In this context, the
inverse relation

FE 1) = / &5 Pk, )dk (1.21)
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also holds. It is interesting to consider the Navier-Stokes equation for a
uniform-density flow in Fourier space, which is

d - > e on o R
(— + vkz) ui(k, t) = —ik,, P;;(k) u;(p, )it,(q,t)dp,
ot ‘ pri=k
(1.22)
where
. kik;
Pyj(k) = 8;j — k—2’ (1.23)

is the projection tensor on a plane perpendicular to k, which enables us to
eliminate the pressure by respecting the incompressibility constraint. Indeed,
incompressibility in Fourier space is written kiz?,»(l;, t)=0.

We define the second-order velocity correlation tensor as

(]l‘j(lj", t): <u[()_C>,l‘)1/lj()_é+?, f)) (124)
Its Fourier transform is the spectral tensor
. - 1\? s
Uij(k, t) = <—> /e"’” Ui(F, t) dr. (1.25)
2 '
For isotropic turbulence, this can be put in the form
Ao 1[EK,t) . - . H(k,t)
Uik, 1) = 2 [Wpij(k) +i eijsksm , (1.26)

where E(k, t) is the kinetic-energy spectrum and H (k, t) is the helicity spec-
trum. Let us now introduce some important quadratic quantities of turbulence
(per unit mass):

* Kkinetic energy:

+o00
E.(t) = %(ﬁ(f,t)z) = % / Uik, t)dk = /O Ek,t)dk,  (1.27)

 helicity:
1 +00
He = 3 (. 0.5(3, 1)) = H(k,0)dk,  |H(k,t)| < kE(k, 1),
0
(1.28)
* enstrophy:
1 +o00
D(t) = 5(5)2> = / FPE(k, t)dk. (1.29)
0
* palinstrophy:

P(t) = %((6 x @)) = /0 o K*E(k, t)dk. (1.30)

11
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Enstrophy and energy are related (in the decaying case) by

d
—E.=—-2v D(t). 1.31
= v D(1) (1.31)
One can derive the following enstrophy evolution equation:
d 98 \'/?
—D =" )y D’ —2v P(1), 1.32
o <135) s(0) v P(t) (1.32)

where s(¢) is defined as minus the skewness of the velocity derivative du; /dx;
in any direction of space:

o\

ox 1

(())"

A constant-skewness model yields enstrophy blowup at a finite time in the
Euler case (see [170]).
One can also define the spectrum of a scalar ¥ such that

s(t) = — (1.33)

+o00
%W@, 1) = / Ee(k, t)dk. (1.34)
0

An important quantity is the kinetic-energy transfer 7'(k, ¢) coming from
nonlinear interactions in the kinetic-energy spectrum evolution equation

(% + 2vk2) E(k,t) = Tk, t) + F,(k), (1.35)

where F,(k) is a possible forcing spectrum, which is a mathematical trick
required if one wants to study statistically stationary turbulence. Kinetic-
energy conservation by nonlinear terms implies

+0o0
/ T(k,t)=0. (1.36)
0

The kinetic-energy flux is

+o0 k
[(k, t) =/ T(k' 1) dk' = —/ T(k' 1) dk . (1.37)
k 0
1.3.2 Kolmogorov k—5/3 energy spectrum

Suppose we have a narrow forcing F,(k) concentrated around a given mode
k;. For a time-independent energy spectrum, Eq. (1.35) can be written as

2vk? E(k) = T(k) + F,(k). (1.38)
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Let
+00 +00
€= / F,(k)dk = 2v f K2 E(k)dk (1.39)
0 0

be the kinetic-energy injection rate equal to the dissipation rate. Integration
of Eq. (1.38) from 0 to k£ > k; yields

im() =€ k>k (1.40)

which shows that € is a very important parameter. Kolmogorov assumes then
for k > k; and v — 0 that E(k) is a function of € and & only. A dimensional
analysis yields

E(k) = Cxe** k™", (1.41)

where Ck is called the Kolmogorov constant.

1.3.3 Kolmogorov dissipative scale and wavenumber

The Kolmogorov dissipative scale is obtained in the following way (see [170],
Chapter VI, for details). Starting from Kolmogorov’s law, we can estimate in
physical space a typical velocity difference between two points separated by
a distance of r:

Su(r) =~ (e r)'/. (1.42)
This is obtained by writing € ~ §u?/(r/8u,). We can thus build a local
Reynolds number through the cascade
réu,

R = ~ €Ay (1.43)
v

The value of R, falls below the value of one for

3\ /4
r<mn= (—) , (1.44)

€

which is precisely Kolmogorov’s scale, such that motions of smaller wave-
length will be damped by viscosity. The Kolmogorov dissipative wave-
number is

ki=n~' = (%)1/4. (1.45)

Many experiments in the laboratory, the ocean, and the atmosphere show
that the kinetic-energy spectrum falls exponentially just before k4, which is
thus a mode above which velocity fluctuations are negligible. This is a strong
argument in favor of the absence of singularities in Navier—Stokes equation
solutions.

13
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The following dissipative scalings are extremely useful: Let the energy
spectrum be written as

E(k,t) = e’ Gkn, 1), (1.46)

2/3..5/3

where G(kn, t) is a nondimensional function, and €“/°n>/° characterizes a
typical dissipative energy-spectrum value. The Kolmogorov-compensated
spectrum (which should be a plateau in an exact k=3 inertial range)
is defined by

Ek, 1)

ey (kn)’G(kn, t) = M(kn, 1). (1.47)

Experimental data show that it has a “Mammoth shape” and that it renor-
malizes the dissipative range and the high-k part of the inertial range very
well.

1.3.4 Integral scale and Taylor microscale

Let f(r) = (u.(¥, t)u. (X + 7, t))/u’ be the longitudinal velocity correlation
coefficient with u, of rms u’ being the velocity component in the 7 direction.
The integral scale and associated Reynolds number are defined as
+00 u/l
/= frydr, R =—, (1.48)
0 v
respectively. One finds experimentally that € = Au’3/] with 4 ~ 1 (see
Tennekes and Lumley [278]). Let us introduce now the Reynolds number
R; = u’x/v based on the Taylor microscale A. The latter characterizes the
mean spatial extension of the velocity gradients and is defined by

22— _u® 1.49
 ((Quy/9x1)?)’ (1.49)

where u; is the velocity fluctuation in any direction (because turbulence
is isotropic). We have € = v((V x u)?) = 15v((du,/9x,)*) = Au’®/1, and

Eq. (1.49) yields
15vl 15 Jwl
A== Ri=,/—F/—>
Au’ AV v

15 /
R, =, —vVR ~ —. 1.50
» =y VRS (1.50)

These scales and Reynolds numbers are important for evaluating the cost of
direct numerical simulations of turbulence. Indeed, a scale characteristic of the

hence,
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smallest scales is the Kolmogorov dissipative scale n. The number of degrees
of freedom of turbulence in each direction of space may be calculated as

3 ! 174
f lhg=o = (%) = AR, (1.51)

which yields for the entire three-dimensional space

Ny~ R)* ~ R)>. (1.52)

1.4 Direct numerical simulations of turbulence

In 1922, the meteorologist Richardson [243] proposed numerical schemes to
solve in a deterministic fashion the equations of fluid mechanics applied to
the atmosphere. This marked the beginning of direct numerical simulations
of turbulence, which are deterministic time-advancing numerical solutions of
fluid mechanics equations with a proper set of initial and boundary conditions.
This is possible® provided the two following conditions are fulfilled:

 the numerical schemes are accurate enough, and
« all the scales of motion, from the largest to the smallest, are captured.

There is some evidence that small-scale turbulence is not far from isotropy
even if large scales are not (see Jimenez [136]), and thus A may be evaluated
even for nonisotropic flows: Jimenez stresses that R; = 3,000 in the bound-
ary layer of a commercial aircraft, 10* in the atmospheric boundary layer,
and higher values are present in astrophysics. Using Eq. (1.52), we find that this
entails, respectively, using more than 10> and 10'® points in computer simula-
tions for the two cases. At present, to avoid excessive computing times on even
the biggest machines, one has to restrict calculations to about 2 x 107 grid
points, which are many orders of magnitude shy of these estimates. Even
with the unprecedented improvement of scientific computers, it may take sev-
eral decades (if it ever becomes possible) before DNS permits us to capture
situations at Reynolds numbers comparable to those encountered in natural
conditions. This demonstrates the immense interest in LES techniques.

1.5 A brief history of LES

The history of LES began in the 1960s with the introduction of the famous
Smagorinsky’s eddy viscosity [269] proposed in 1963. Smagorinsky, a me-
teorologist like Richardson, did work in the famous mathematical-modeling
group founded by von Neuman. In fact, Smagorinsky wanted to represent the

3 However, one must assume a “Laplacian” point of view of existence and uniqueness of
solutions at arbitrary times, which is not proven mathematically in three dimensions.

15
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effects on a quasi-two-dimensional, large-scale atmospheric or oceanic flow of
a three-dimensional subgrid-scale turbulence following a Kolmogorov direct
cascade. [tis interesting to remark that Smagorinsky’s model was a total failure
as far as atmospheric and oceanic dynamics are concerned because it overly
dissipates the large scales. Therefore large-scale atmospheric or oceanic nu-
merical modelers turned toward hyperviscous subgrid models. Nonetheless,
Smagorinsky’s model was extensively used by people interested in industrial
applications (and also small- or mesoscale meteorology), which shows that
the outcome of research may be as unpredictable as turbulence itself. One
should mention the important contribution of Lilly, another meteorologist
and Smagorinsky’s collaborator, who calculated the value of the Smagorinsky
constant in terms of the Kolmogorov constant in three-dimensional isotropic-
developed turbulence [184]. In fact, in 1962 Lilly [182] published a LES of
buoyant convection in the atmosphere using Smagorinsky’s model. The first
application of the latter to engineering flows was the pioneering study of a
plane channel done by Deardorff [63], another meteorologist, who with his
collaborators started at the same time an impressive series of works on large-
eddy simulations of the planetary boundary layer (Deardorff [64], Somméria
[271]). The last three works use transport equations for the subgrid quantities
derived from a one-point closure-type analysis and are in fact precursors of
the so-called unstationary Reynolds-averaged Navier—Stokes equations that
have been developed these past few years (see the book by Durbin Chichester
and Pettersson Reif Chichester [83] devoted to these methods and the discus-
sion later). In 1975 Schumann [259] applied the SGS kinetic-energy transport
equation to LES of plane channels and annuli together with a method to ac-
count for the anisotropy of the finite-difference grid. He found in the case of
the turbulent plane channel a very good agreement with the experiments of
Laufer [158] and Comte-Bellot [49] as far as the mean and rms velocities are
concerned.

Meanwhile, the theoretical physicist Kraichnan* developed in 1976 the im-
portant concept of spectral eddy viscosity [147]. This was done in the context
of isotropic turbulence two-point closures, and it allowed the calculation of
the kinetic-energy transfers between a given Fourier mode £ < £, and modes
greater than k. In the framework of LES, and as already noticed by Lilly,
who used this fact to determine the Smagorinsky constant as a function of the
Kolmogorov constant, subgrid-scale wavelengths smaller than Ax correspond
in Fourier space to high spatial frequencies larger than a cutoff mode k¢ of
the order of w/Ax.

The spectral eddy viscosity, utilized now at the level of the Navier—Stokes
equation (and no longer for kinetic-energy spectrum studies), was used in

# Kraichnan worked as a postdoctoral student with Einstein at Princeton.
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Grenoble by Lesieur and co-workers to develop LES in spectral space. Such
an eddy viscosity has the great advantage of overcoming the scale-separation
assumption inherent to any eddy-viscosity model in physical space. They
carried out the first LES of decaying three-dimensional isotropic turbulence
(Chollet and Lesieur [41]). They also extended the notion of spectral eddy
viscosity to a spectral eddy diffusivity and did the first LES of passive-scalar
decay in isotropic turbulence [42]. We stress that LES of scalars (passive or
active) is essential for mixing and combustion studies. These spectral eddy-
viscosity and diffusivity models were adapted to physical space in the form
of the structure-function model (Métais and Lesieur [205]), with better re-
sults for three-dimensional isotropic turbulence than those of Smagorinsky
in terms of Kolmogorov k—>/3 inertial range. For applications to shear flows
(free or wall-bounded), the structure-function model was adapted to filter out
the inhomogeneous effects of the larger scales: This yielded, respectively,
the selective [61] and filtered [81] structure-function models. Meanwhile, the
physical-space eddy-viscosity concept was revived in a joint work between
Stanford and Torino, with a dynamic evaluation of Smagorinsky’s constant
through a double filtering (Germano and co-workers [108], [109]). The dy-
namic procedure was also associated with the scale-similarity ideas of Bardina
et al. [12] to extend the eddy-viscosity concept.

1.6 LES and determinism

Turbulence in fluids is still considered one of the most difficult problems posed
in physics. Let us recall in particular Feynman’s statement that “turbulence
[is] the last great unsolved problem of classical physics.” One is, however,
far from the complexity of molecular microscopic physics, since one just
deals with the laws of Newtonian mechanics applied to a continuous medium
in which molecular-diffusion effects have been filtered out and replaced by
molecular viscous exchanges. Such a system has a double behavior of deter-
minism in the Laplacian sense and extreme sensitivity to initial conditions
because of its strong nonlinearity.

From a mathematical viewpoint, the LES problem is not very well posed.
Indeed, let us consider the time evolution of the fluid as the motion of a point
in a sort of phase space of extremely large dimension (e.g., ~10' around
a wing). Suppose that at some initial instant z, the LES flow is taken to be
identical to the exact flow in the resolved scales. In scales smaller than Ax,
the LES motion is not defined. As stressed by Lesieur ([170], p. 380), let
us consider two realizations of the actual flow, identical to the LES in the
large scales and completely decorrelated in the subgrid scales. If we accept
the results on the propagation of unpredictability caused by nonlinear effects,
the difference between the two fields will propagate into the large scales by

17
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error backscatter, and the two exact realizations will depart in these scales.
Now let us assume that we have been able to solve the subgrid-scale modeling
problem posed by LES and dispose of closed large-scale equations in which
everything is expressed in terms of these scales. Then the LES field will
evolve as a third realization in phase space different from the two other actual
realizations in resolved scales. So, as time goes on, the LES will depart from
reality. However, as will be seen in the following, LES enables us to predict
the statistical characteristics of turbulence as well as the dynamics of coherent
vortices and structures.

Note that chaos in dynamical systems with a low number of degrees of
freedom is generally characterized by a positive Lyapounov exponent with
exponential growth of the distance between two points initially very close in
phase space. In isotropic turbulence, we introduce for predictability studies
the error spectrum E A (k, t), characterizing the spatial-frequency distribution
associated with the energy of the difference between two random fields i
and i, with same statistical properties,

1 - - +oo
Z([ﬁl(x,t)—uz(x,t)]) =/ Ex(k, t)dk, (1.53)
0
where the energy spectrum E(k, t) is such that
1 1 +00
—(u?) = ~(Wl) = / E(k, 1) dk. (1.54)
2 2 0

The error rate

J7 Eatk, )dk

[5 E(k, t)dk

r(t) = (1.55)
equals zero when the two fields are completely correlated and equals one when
they are totally uncorrelated. In predictability studies, one generally takes an
initial state such that complete unpredictability [ £(k) = Ea(k)] holds above
kg(0), while Ex(k)is 0 fork < kg(0). Two-point closures of the EDQNM type
(see [170] for details) show (in three or two dimensions) an inverse cascade
of error, where the wavenumber k() characterizing the error front decreases
(see M¢étais and Lesieur [204]). Thus, the error rate can be approximated by

N fkf(t) Ek, t)dk

[ Ek, Hdk

r(t) (1.56)
We assume that the turbulence is forced by external forces; therefore, the
kinetic energy arising in the denominator of Eq. (1.56) is fixed. In three-
dimensional turbulence, and if a k—/3 spectrum is assumed for k > kg, the
error rate will be proportional to |, ,;_o k=33 dk ~ kgz/ > In fact, closures show

that kEl follows a Richardson’s law (kgl o £3/2), and thus the error rate grows
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linearly with time. A similar behavior has been reported by Hunt [130] in an
analysis of weather forecast models. This is in fact a slow increase compared
with the exponential growth of chaotic dynamical systems and is quite en-
couraging from the standpoint of potentially using LES for three-dimensional
turbulent flows.

1.7 The place of LES in turbulence modeling

Let us call turbulence numerical modeling any numerical approach allowing
us to predict the evolution of instantaneous or mean quantities associated with
turbulence and that can be applied to shear flows.

The first approach is DNS, which provides both instantaneous and statis-
tical predictions. It is exact® but very costly and is limited to low Reynolds
number flows, as previously discussed.

The second approach is LES. It is a type of DNS of the large scales, and
it gives, as does DNS, both instantaneous and statistical data.

The third approach consists of solving the Reynolds equation, an ensemble-
averaged Navier—Stokes equation for which the ensemble average is the same
as previously introduced for isotropic turbulence and is taken on an infi-
nite ensemble of independant realizations. The Reynolds equation (at least
in the constant-density case) is the Navier—Stokes equation for (u;) with ex-
tra stresses given by the Reynolds stresses. This is what people call RANS
(Reynolds-averaged Navier—Stokes). The very difficult one-point closure
problem previously mentioned consists of modeling the Reynolds stresses
in terms of (u;). In the case of all statistically stationary turbulent flows (such
as a wake, mixing layer, backstep, or jet), the relevant solutions of the Reynolds
equation cannot have by essence any time dependance because the flow is sta-
tistically stationary. However, numerical solutions of the Reynolds equations
closed by some model and with the velocity time derivative retained show
unstationary phenomena such as shedding of Karman vortices in a wake or
Kelvin—Helmholtz vortices in a mixing layer or a backstep. In fact it can
be shown that, when a clear shedding frequency of vortices may be identi-
fied in the flow, phase averaging of the instantaneous velocity with respect
to the period of the shedding gives rise to an unstationary equation similar
to the Reynolds equation. Such a formalism was introduced by Reynolds
and Hussain [242]. This may justify the unstationary solutions found for the
modeled Reynolds equation. However, phase averaging is not a well-defined
operator downstream of shear flows, where coherent vortices become unpre-
dictable. It cannot be defined at all in isotropic turbulence if no solution of
the flow is known. The problem is that wide use is currently made of the

5 The exactness holds only if numerical schemes are accurate enough.
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so-called unstationary RANS methods for complex industrial or environmen-
tal turbulent flows without due consideration of the significance of the com-
puted solutions. Considering the strong analogy of LES equations and unsta-
tionary RANS equations at the level of linear momentum, we think that the
latter approach should be viewed more as a loosely resolved LES. Compar-
isons of both methods with the same numerical code and the same resolution
should be carried out for a wide range of flows to evaluate the role of transport
equations in RANS. We stress again that LES of an unstationary RANS type
has already been used for a long time by Deardorff [65] and co-workers for
meteorological applications as well as by Schmidt and Schumann [258]. The
latter studied the structure of turbulent thermal convection in the atmosphere.
A problem of the same type was addressed by Hanjalic and Kenjeres [117]
using unstationary RANS. They extended their work in the magnetohydro-
dynamic case by adding a magnetic field, with very impressive visualizations
showing the influence of the Hartmann number on the flow structure.



2 Vortex dynamics

As was already briefly discussed, large-eddy simulations deal with energetic
structures of the flow with a characteristic scale or wavelength larger than a
given cutoff scale Ax. These so-called large scales may or may not be spatially
organized and sometimes correspond to coherent vortices of recognizable
shape. Itis therefore important that we use precise language. Within these large
scales, we will consider in particular coherent vortices and coherent structures.
However, some of the large scales do not fall into these two categories. In this
respect, the term “large-eddy simulations™ is not very well chosen, and the
French expression “simulation des grandes échelles” (large-scale simulations)
is more appropriate.

Before looking more specifically at coherent vortices, it is of interest to
recall the basic elements of vorticity dynamics associated with the behavior
of the vorticity vector @.

2.1 Vorticity dynamics

Taking the curl of the momentum equation (1.7), we have

0w, = L. I - = . S
+ V X (ws X u) = — Vp x Vp + viscous dissipation, (2.1)
0

which may be written as

Da,
Dt

W Ze 2 o o 1 - > . D
=, - Vu — (V- u) 0, + — Vp x Vp + viscous dissipation,
I
(2.2)
or, using the continuity equation, as

D (&, @q 2. 1 o = : o
— | — ) = —-Vu+ — Vp x Vp + viscous dissipation, (2.3)
Dt \ p o o3

21



22

LARGE-EDDY SIMULATIONS OF TURBULENCE
where

0

Hence, for a perfect barotropic fluid, @,/p satisfies the equation of evolution
—
of a small vector MM’ when M and M’ follow the fluid motion. Indeed

D—— _ . - TS Sr S o AT
D_tMM =uM)—uM)=MM -Vu=Vu MM 24)

characterizes the “passive-vector” equation valid to the first order in M M.

2.1.1 Helmholtz-Kelvin’s theorem

Let us consider the circulation of the velocity along a closed contour C. We

have
D [ . - . Dél Dii -
—%u-él:%u-—+ — -4l (2.5)
Dt Jc c Dt c Dt

The first term on the right-hand side (r.h.s.) of Eq. (2.5) is zero because of
Eq.(2.4), which applies to 51. The second will be zero if Dii / Dt is proportional
to a gradient. This happens in two cases (for perfect flow, and no rotation):
if p is uniform (Helmholtz’s theorem), or if the flow is barotropic (Kelvin’s
theorem). This implies that, in the conditions of the theorem, vortex tubes
(whose envelope comprises vortex lines tangent to the vorticity vector at each
point) are material and travel with the fluid parcels they contain.

2.2 Coherent vortices

For the rest of the chapter, we will discuss nonrotating flows (é =0) of
uniform density pg.

2.2.1 Definition

Coherent vortices in turbulence are defined by Lesieur ([170], pp. 6-7) as
regions of the flow satisfying three conditions:

(i) The concentration of w, modulus of the vorticity vector, should be high
enough so that a local rollup of the surrounding fluid is possible.

(i1) They should keep their shape approximately during a time 7, long enough
in front of the local turnover time w~"'.

(iii)) They should be unpredictable.

In this context, high @ is a possible candidate for coherent-vortex
identification.
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2.2.2 Pressure

With such a definition, the cores of the coherent vortices should be pres-
sure lows. Indeed, a fluid parcel winding around the vortex will be (in a
frame moving with the parcel) in approximate balance between centrifugal
and pressure-gradient effects. We are talking here of the static pressure p. The
reasoning may be made more quantitative by considering the Euler equation
(in a flow of uniform density py) in the form
8—”+axﬁ:—i*}), (2.6)
at £0
where P = p + po[® + (11%/2)] is now the dynamic pressure. In a frame
moving with the coherent vortex and supposed locally Galilean, the ratio
(within the vortex) of the second to the first term on the left-hand side (1.h.s.)
of Eq. (2.6) is of the order of 7, w. Then the equation reduces for the coherent

vortex to the cyclostrophic balance
- o 1 -
wXu~——VP (2.7)
Lo

if condition (ii) is fulfilled. If one supposes that the coherent vortex is a vortex
tube tangent to the velocity vector, it follows that this tube is a low for the
dynamic pressure.

2.2.3 The Q-criterion

We recall now the so-called Q-criterion. Let

1 (Ou; Ou; 1 (Ou; Ou;
Sy=- (M) = (22 (2.8)
2 a.Xj 8)6,' 2 axj ax,-
be, respectively, the symmetric and antisymmetric parts of the velocity-

gradient tensor du; /dx;. It is well known that the second invariant of this
tensor,

1 1 .
0= E(QijQij —8;;Sij) = Z(a)z —25;;8i), (2.9)

is equal to V2p/2p,. Indeed, the Poisson equation for the pressure in a flow
of uniform density can be written as

Vr_ ¥ O [, il _ Bui buy
jaxj

= —U;U; = — =
00 0x;0x; T Axg 0x; 0x;

1 1 1.
= (Sij + EE[jACOA) (Sji + Eej,-ua)ﬂ> = S,'J'S,'j — sz = —2Q

Let us present now a line of reasoning discussed in [78]. We consider a low
static-pressure tube of small section (see Figure 2.1). Let AX be its lateral
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o Figure 2.1. Schematic low-pressure tube. (From Dubief and Delcayre [78];
courtesy Journal of Turbulence.)

surface, which is assumed to be isobaric and convex. Let ¥, and X, be two
cross sections of the tube normal to its axis, and let AV be the volume of
the tube portion between X and X,. The pressure gradient on AX is normal
to it and directed toward the exterior. The pressure gradient on the two cross
sections is tangent to them. Then, the flux of the pressure gradient getting
out of the tube is equal to the flux through AX and is positive. From the
divergence theorem, this is equal to the integral over AV of V2p, which is
positive, as well as the integral of Q. If we suppose that the size of AV is
small enough that O does not vary appreciably within it, this implies that O
is positive in A V. This reasoning may be repeated all along the length of the
tube, and the Q-criterion (Q > 0) is therefore a necessary condition for the
existence of such thin, convex low-pressure tubes.

To our knowledge, the Q-criterion was first proposed by Weiss [290] to
characterize “elliptic” regions in two-dimensional turbulence. Let us consider
the inviscid vorticity-gradient equation in this case,

D - > -
- -Vo = —-Vii|'® Vo, 2.10
D w ul ® Vo ( )

where here w is the vertical vorticity component and %i’tlt is the transposed
velocity-gradient tensor. We can calculate the eigenvalues of Vii ', which are
identical to those of Vii. Their square is — Q, and they are purely imaginary if
0O > 0. In this case the vorticity gradient will rotate locally — a property that
is expected from a vortex. It was checked by Basdevant and Philipovitch [16]
using DNS that the core of vortices in two-dimensional isotropic turbulence is
quite well represented by Weiss’s elliptic regions.! We notice that Eq. (2.10) is
also valid for a passive-scalar gradient v p if one neglects molecular diffusion,
-D-%p = —Vil'® Vp, (2.11)
Dt
and the scalar gradient will also rotate locally in elliptic regions.
In three dimensions, Eq. (2.10) is no longer valid of course, but Eq. (2.11)
is. We recall the very important work of Chong et al. [44], which is well

! The quantity Weiss called O was in fact of opposite sign with respect to the present notation.
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reviewed by Bernard and Wallace ([22], p. 167). We write the passive-vector
equation (2.4) for a vector 8/ lying in a plane perpendicular to the vortex axis,
whose origin is located on the latter and whose extremity is slightly away:

D- .. .
L5 = Vil 2.12
Dt “e 2.12)

Within a vortex, the extremity of 31 should rotate. Chong et al. [44] have
shown that this occurs when the tensor Vii has one real eigenvalue and two
complex ones. In fact, the eigenvalues are, in the constant-density case, the
solution of the equation

M+Or+R=0, (2.13)

where R is minus the determinant of the matrix associated with the velocity-
gradient tensor. The conditions sought for the eigenvalues correspond to a
positive discriminant

40° +27R* > 0. (2.14)

This so-called A-criterion is complicated, and the simplified approximate
condition Q > 0 was proposed in Hunt et al. [129] to characterize the vortices.
Notice that in two dimensions we may apply the same analysis for the vector
3l. Equation (2.13) reduces to A> + Q = 0. We then recover Weiss’s result.

We have thus shown that the Q-criterion, although not exact in three di-
mensions for characterizing the local rotation of a passive-scalar gradient,
is valuable to help characterize convex low-pressure tubes, which are gen-
erally associated with coherent vortices. Notice, however, that the relation
0O = V?p/2p, implies that vortex-identification criteria based on Q involve
much more small-scale activity than those based on the pressure, as will be
verified in the simulations. It is also clear from Eq. (2.14) that positive O
implies that the A-criterion is fulfilled. The latter is hence more restrictive
than the Q-criterion.

2.2.4 The \,-criterion

We now briefly describe the A,-criterion introduced by Jeong and Hussain
[133]. They consider the evolution equation for S;;, which in the Euler case
(see, e.g., Ohkitani [222]) can be written as

D 1
ESU + Qi 2 + SikSiy = _%p,ij» (2.15)

where the notation , i stands for a derivative with respect to x;. The quantity
p.ij = 0°p/dx;dx; is called the pressure Hessian. Jeong and Hussain neglect
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the Lagrangian time-derivative term? and associate a coherent vortex to a local
minimum of pressure. In fact the pressure Hessian is a real symmetric matrix
whose eigenvalues are real, and the fact that pressure is minimum implies
that two of these eigenvalues are positive. This implies that €2;;2;; + S;xSk;
(which is also a real symmetric matrix and has real eigenvalues) has two
negative eigenvalues and hence that its second eigenvalue A, is negative.
Because we have shown that Q is positive within small low-pressure tubes of
convex cross section, the O and A, criteria can be said to be strongly related
(see also [59]).

2.2.5 Simple two-dimensional vortex interactions

Let us briefly recall two essential two-dimensional vortex interactions, which
will turn out to be important even in three-dimensional shear flows (free
or wall-bounded): pairings of same-sign vortices and traveling dipoles of
opposite-sign vortices.

Let us first consider in a plane a local vorticity concentration within a
convex closed contour C. Let X be the enclosed area, and let @X be the
vorticity flux across the surface. The fluid outside of C is assumed to be
irrotational. Stokes circulation theorem implies the existence of an induced
azimuthal velocity within the irrotational region, whose modulus a distance
apart from the vortex is w0 X /27r.

 Pairing: Suppose we have two same-sign vortices. They will revole around
each other owing to velocity induction, and they will pair if they are close
enough. During the process, they form spiral arms reminiscent of galax-
ies owing to the differential rotation® existing between the interior and
the exterior of the vortices. Many pairings are observed in mixing-layer
experiments or computations such as those shown in Chapter 1.

¢ Dipoles: Opposite-sign vortices will travel together because of the mutual
induced velocity. This phenomenon enables us to explain the self-raising
of traveling hairpin vortices (see the present chapter and Chapter 7).

2.3 Vortex identification

Let us present a comparison of some of these vortex-identification methods
(low pressure, high ||, positive O, and negative A,) applied to incompressible
DNS of isotropic turbulence and LES of a backward-facing step as done by
Delcayre [69]. Other exemples will be provided in the rest of the book. More
specifically, we consider isosurfaces at a given threshold of |w|, P, O, and

2 This is acceptable if the vortex is coherent enough.

3 The angular velocities are oc » 2.
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Figure 2.2. Low-pressure isosurfaces in DNS of
isotropic turbulence. (From Delcayre [69].)

Az. The choice of the threshold is justified by what visually gives the best
vortices, or with respect to what we know of the flow dynamics from former
simulations or laboratory experiments.

2.3.1 Isotropic turbulence

For isotropic turbulence, we first consider a DNS at low Reynolds number
(freely decaying case) done by Lesieur et al. [171] using pseudo-spectral
methods. We start from a Gaussian initial velocity, whose coherent vortices
during the self-similar decay period following the enstrophy blowup have
been analyzed by Delcayre [69]. It is well known that coherent vortices exist
in such a flow in the form of randomly oriented thin tubes of length equal to
the turbulence integral scale (see, e.g., Siggia [263], She et al. [262], Vincent
and Ménéguzzi [288], Métais and Lesieur [205], Jimenez and Wray [135]).
Comparison of Figures 2.2 and 2.3 (left) shows that the isobaric surfaces are
fatter than the vorticity surfaces but represent the same large-scale events,
which are findings in good agreement with the observations of Brachet [29]
for Taylor—Green vortices and Métais and Lesieur [205] for LES of isotropic
turbulence. Let us mention also the laboratory experiments of Cadot et al. [35]
involving turbulence between two counterrotating disks, which displayed the
presence of vortices that were pressure troughs. Figure 2.3 (right), showing
the iso- O maps, is close to the vorticity map, although it is slightly less dense.
The negative A, map (not presented here) resembles the Q maps.

The first three movies on the CD-ROM present animations of, respec-
tively, low pressure (Animation 2-1), positive Q (Animation 2-2), and vor-
ticity norm (Animation 2-3) in a LES of decaying isotropic turbulence us-
ing the spectral-dynamic model (see Chapter 4) carried out in [176] with
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Figure 2.3. High-vorticity (left) and positive Q (right) isosurfaces in DNS of isotropic turbulence.
(From [69].)

1283 collocation points. The initial peak of the kinetic-energy spectrum is
at k; = 4. The evolution goes from ¢ = 0 to 15 initial large-eddy turnover
times (see Chapter 4 for more details on isotropic turbulence evolution). Here
again, the initial velocity field is Gaussian. The threshold values for P, O, and
the vorticity are chosen empirically to give the best visual representation of
vortices. The pressure animation (see also Figures 2.4 and 2.5) starts with a few
big low-pressure structures in the form of billows and even bubbles, some of
which seem to be attached to the billows. These structures are associated with
the initial nondivergent Gaussian field. These big Gaussian structures evolve
and interact in a complicated and difficult-to-follow manner in such a way as to
become thinner and thinner. At¢# = 7 they have nearly totally disappeared — at
least as far as the particular threshold is concerned.* In Figures 2.6-2.8, which
are fixed views at ¢t = 6 taken from Animation 2-1, the lower and left sides
of the computational box are colored by the value of the associated quantity
on this side. Figure 2.6 displays the pressure.’ One notices on the left side of
the box an initial low-pressure peak (due to initial conditions) whose intensity
diminishes, then grows again at about = 2, and then decreases. In the Q evo-
lution of the animation and of Figures 2.4 and 2.5, nothing is seen at the initial
instant. Then one sees the progressive formation of tubes (much thinner than
the pressure tubes), which have filled the space at# = 4. Beyond this time, one
sees the rapid appearance of small-scale turbulence, which seems to be due to

4 See the discussion on time-varying thresholds that follows.
5 It is in fact a macropressure, whose definition will be given in the next chapter.
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Figure 2.4. Decaying isotropic turbulence. Successive evolution of pressure (left) and Q (right)
fromt=0tot=23.

the breakdown of larger scale tubes in some regions of the flow and is finished
att = 5. Afterward, one observes a superposition of large-scale and fine-scale
tubes, as well as other small scales not organized into tubes. Turbulence seems
to be more intermittent in the sense that coherent structures occupy a smaller
fraction of space. The animation of vorticity (see also Figure 2.8) shows in
the same conditions the evolution of the vorticity modulus. One sees hardly
any difference when comparing with Q, and the formation of vortex sheets,
which by rollup would generate the coherent vortices, is not obvious. On the
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Figure 2.5. Decaying isotropic turbulence. Successive evolution of pressure (left) and Q (right)
fromt=4tot=7.

left side of the box, and in contrast to the amplitude of the pressure troughs,
the intensity of high vorticity increases continuously during several turnover
times. It is therefore clear in this case that there is no correlation between
low pressure and high vorticity during the initial stage of evolution of such
turbulence initially close to Gaussianity.

Let us return to Figures 2.4 and 2.5, which show in fact the “birth and
evolution” of vortices through pressure and Q. It should be stressed that for
large times and if a time-varying threshold adjusting to the decaying vortex
intensity was chosen, one should certainly be able to observe vortices.
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TiTret = 5.52000

Figure 2.6. Isotropic decaying turbulence. Fixed view at t = 6 of pressure in Animation 2-1;
ki = 4; 1283 modes.

TiTret = 5.52000

Figure 2.7. Isotropic decaying turbulence. Fixed view att = 6 in the animation of Q isosurfaces
at a given positive threshold.
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Figure 2.8. Isotropic decaying turbulence. Fixed view at t = 6 in the animation of the vorticity
modulus.

When small-scale turbulence has developed, everybody seems to agree
on the average tube length, which is the integral scale /. It is currently un-
certain whether the diameter scales on the dissipative scale or on the Taylor
microscale. Indeed, and if we interpret the vortices as resulting from the rollup
of local vortex sheets, it is the Taylor microscale that should prevail, for it may
be interpreted as proportional to some average local mixing-layer thickness
within the flow. However, it is possible that vortex stretching (which seems to
occur in the movie if there are no threshold-related artificial effects) dimin-
ishes the tubes’ diameter up to the Kolmogorov scale. If fact, this strongly
anisotropic vortex topology is very far from the quite naive spherical ed-
dies considered in the popular folklore of Taylor—Richardson—Kolmogorov
cascades.

A last remark on the structure of isotropic turbulence at small scales is
in order: LES cannot of course give access to the smallest scales because
they have been filtered out. However, the resolved motions display geometric
features that resemble the fractals popularized by Mandelbrot [194]. Advanced
multifractal studies of three-dimensional isotropic turbulence are presented in
Frisch [103]. The multifractal character of turbulence might be at the origin
of departures from Kolmogorov’s 1941 laws [145] concerning the velocity
structure functions of high order.
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-0.3H 15H
Figure 2.9. Schematic view of the backward-facing step. (From Delcayre [69].)

2.3.2 Backward-facing step

We now present LES results of a uniform-density flow above a straight
backward-facing step. The code used is TRIO-VE a tool developed for
industrial applications of turbulence modeling and LES by the Commissariat
a I’Energie Atomique (CEA) in France. (Details of this code will be given in
Chapter 6.) The model used is the selected structure function (SSF) model
(see Chapter 4). An animation of the simulation is presented on the enclosed
CD-ROM (Animation 2-4). Figure 2.9 shows a schematic view of the flow.
The step height is H, the expansion ratio is 1.2, and the Reynolds number
is UpH /v = 5,100 as in the configuration studied experimentally (Jovic and
Driver [138]) and numerically by Le et al. [159] using DNS. A free-slip bound-
ary condition is used on the upper boundary. This is well justified based on
laboratory experiments consisting of a double-expansion channel with poten-
tial laminar flow in its central part.

At the inlet, Spalart’s [273] mean turbulent boundary layer velocity profile
isimposed. A small three-dimensional white-noise perturbation regenerated at
each time step is superposed to the latter. One assumes periodicity in the span-
wise direction, and there is an outflow boundary condition of the Sommerfeld
type, where the quantities are transported following a fictitious “tangential”
wave-phase velocity (Orlanski [223]). We have determined that the latter is
very good for letting the coherent vortices get out of the computational domain
without any distortion. Animation 2-4 displays the following vortex dynam-
ics: Quasi-two-dimensional Kelvin—Helmholtz-type vortices are shed behind
the step, resulting from the instability of the upstream vortex sheet. Then
they are subject to dislocations (helical pairings) and transform into a field of
large, staggered archlike vortices, which impact the lower wall and are carried
away downstream with their legs lying longitudinally close to the wall and
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Figure 2.10. Incompressible backward-facing step; visualization of coherent vortices using
high-vorticity modulus (left) and positive Q (right) isosurfaces. (From Delcayre [69].)

progressively raising away from the wall, as a result of the aforementioned
self-induction of dipoles.

Figure 2.10 (left), presenting isovorticity maps, does show the breakdown
of'the vortex sheet into large staggered A vortices. Figure 2.10 (right) presents
iso-Q maps and indicates the same vortex events as for the vorticity, but the
vortices are thinner® and the upstream vortex sheet has been erased. In fact, the
vortices in the movie are colored both by Q and by the longitudinal vorticity
(positive, gray, negative, dark), so that their right and left legs are colored,
respectively, in these two colors. Plots based on X, (not shown here) are similar
to O maps. Finally, isobaric surfaces (Figure 2.11) are misleading in this case
because they seem to indicate a large quasi-two-dimensional vortex at the
level of reattachment, whereas it is simply an erroneous reconnection of
the tips of the big As.

In a more recent LES study of the same step at Mach 0.3, Lesieur et al.
[176] compare flows resulting from two sets of upstream conditions:

A. a mean velocity profile corresponding to Spalart’s boundary-layer DNS
[273] perturbed by a weak three-dimensional white noise, and

B. amore realistic, time-dependent velocity field (precursor calculation) gen-
erated through an extension to the compressible case of the method devel-
oped by Lund et al. [192].

In case B, the upstream boundary layer contains quasi-longitudinal vortices
propagating before the step, as can be seen on the bottom of Figures 2.12
and 2.13.

¢ This might be due to an ill-chosen threshold.
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Figure 2.11. Incompressible backward-facing step showing low-pressure isosurfaces. (From
Delcayre [69].)

The first grid point in the direction normal to the wall is at a distance of
1.3 in wall units relative to the upstream turbulent boundary layer. Periodicity is
assumed in the spanwise direction, and the boundary conditions at the top and
the exit of the domain are nonreflective. This makes a difference with respect
to the DNS of [159] where free-slip conditions are taken. Figures 2.12 and
2.13 show Q isosurfaces (with a threshold of 0.6U¢ / H?) for the two classes
of upstream conditions. In Figure 2.12 (top), one sees the regular shedding of
straight quasi-two-dimensional Kelvin—Helmbholtz vortices, which appear at a
distance of 1.5 —2 H downstream of the step. They undergo helical pairing and
transform into big A vortices (arch vortices) that impinge on the lower wall
and are carried away from the step. Figure 2.12 (bottom) shows qualitatively
the same events, but vortices appear very close to the step, and the flow is much
more three-dimensional. Helical pairing seems to be triggered by the passage
of upstream longitudinal vortices passing above the step. The side views of
Figure 2.13 confirm that the flow reattaches sooner in this case than in the
noisy case. This is confirmed by the determination of the reattachment length,
which is 5.80 H for condition A and 5.29 H for condition B. The latter value is
different from the value of ~6.1 H found in [159] with equivalent upstream
conditions. This discrepancy may be attributed to the differences in the bound-
ary conditions above and downstream of the computational domain. Anima-
tions 2-5 and 2-6 illustrate the two types of simulations (noisy and precursor).
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T=043.20 h/Uo

T=043.20 h/Uo

Figure 2.12. Perspective view of the Mach 0.3 backstep. (Top) Noised upstream velocity.
(Bottom) Precursor upstream velocity. (From Danet [60].)

2.4 Coherent Structures

We define coherent structures in a much more general way than coherent
vortices as structures displaying at a given time some spatial organization in
space. In this respect, low- and high-speed streaks observed close to the wall
in turbulent boundary layers, channels, and pipes are coherent structures.
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T=043.20 h/Uo

T=043.20 h/Uo

Figure 2.13. Side view of the Mach 0.3 backstep. (Top) Noised upstream velocity. (Bottom)
Precursor upstream velocity. (From Danet [60].)

Animations

Animation 2-1: LES of decaying isotropic turbulence. Low macropres-
sure isosurfaces from ¢ = 0 to 15 initial large-eddy turnover times; k; = 4.
(Film 2-1.mpg; courtesy P. Begou.)

Animation 2-2: Same as Animation 2-1 for positive Q isosurfaces. (Film
2-2.mpg; courtesy P. Begou.)
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Animation 2-3: Same as Animation 2-1 for vorticity norm isosurfaces. (Film
2-3.mpg; courtesy P. Begou.)

Animation 2-4: Shedding of arch vortices downstream of a straight backward-
facing step. Vortices are visualized by Q isosurfaces colored by longitudinal
vorticity. (Film 2-4.mpg; courtesy F. Delcayre.)

Animation 2-5: Noisy backward-facing step at Mach 0.3 showing Q isosur-
faces. (Film 2-5.mpg; courtesy A. Danet.)

Animation 2-6: Backward-facing step at Mach 0.3 showing precursor inflow
and Q isosurfaces. (Film 2-6.mpg; courtesy A. Danet.)



3 LES formalism in physical space

This chapter deals with an incompressible flow whose density is conserved
with the fluid motion, which implies the continuity equation V.ii = 0. Then
p may either be uniform or have a mean variation taken into account through
Boussinesq’s approximation (see Lesieur [170], Chapter II).

3.1 LES equations for a flow of constant density

To begin with, let us consider a numerical solution of the Navier—Stokes
equations with constant density pq carried out in physical space, using finite-
difference or finite-volume methods. Let Ax be a scale characteristic of the
grid mesh. To eliminate the subgrid scales, we introduce a filter of width Ax.
Mathematically, the filtering operation corresponds to the convolution of any
quantity f(x, ¢) of the flow by the filter function G o, (X) in the form

ﬂi0=/f@%ﬁm@—iwﬁ=/f@—i0GM@Mi 3.1)

and the subgrid-scale field is the departure of the actual flow with respect to
the filtered field:

f=7+7. (32)

Since Ax is for the moment assumed constant,! it is easy to show that the
space and time derivatives commute with the filtering operator.

We use a Cartesian system of coordinates. Let us first write the linear-
momentum equations as

81/!,‘
ot

9 1 ap @
" Wj(”f”j) = ot

2v8;;), 33
et e V) (33)

! This assumption may pose some problems later if irregular computational grids are used,
although we never said that Ax was identical to the grid mesh.
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where §;; is the deformation tensor already defined. The filtered momentum
equations are exactly

ol 0 _ _ 1 ap
— + —Wju;)=—— — —2 S,' T:), 34
Py + axj(uluj) 00 0%, + 3 ( Vi + 1_1) ( )

where
7—;] L_l ﬁj uju,; (35)

is the subgrid-stresses tensor responsible for momentum exchanges between
the subgrid and the filtered scales. The filtered continuity equation is
dil
—L =0. (3.6)
ox j
Let us consider now the mixing of a scalar (such as temperature or density)
of molecular diffusivity « transported by the flow and satisfying the equation

8,0 ad ap
. 3.7
£+ (p =5y { ax,} (3.7)
The filtered scalar equation is then
ap a __ a ap )
it )= —k—+T"1, 3.8
dt + Xj(puj) 8)6]‘ {Kaxj + J ( )
where
T}") = pil; — pil; (3.9)

is the subgrid scalar flux. 7;; and Tj(p ) can be written as

1 = — (07 + Bl + 07 + ity — i) (3.11)

In Eq. (3.10), —Tu; is a Reynolds-stress-like term, —(fu’j + Fﬁj) is called
the Clark term (Clark et al. [46]), and i;ii; — ;i is the Leonard tensor
[163]. The latter is explicit in the sense that it is defined in terms of the filtered
field, and it has been used in scale-similarity models to provide information
on the subgrid stresses (see Chapter 6). Leonard’s stresses are also a major
ingredient of the so-called Germano’s identity for the dynamic approach in
physical space.
These subgrid-scale tensors and fluxes need of course to be modeled.
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3.2 LES Boussinesq equations in a rotating frame

We give now the LES equations corresponding to the Navier—Stokes equa-
tions within the Boussinesq approximation in a Cartesian frame of reference
rotating with a constant angular velocity €2 about the x3 axis. The momentum
equation is

ou; a _ 1 9p a = _ 0
a5 + Ej(uiuj) = _E a—XZ + ox, —@2vS;; + Tij) + 2€;52u, +gi3i3g )
(3.12)

where g; are the gravity components, and py is the average of the density on
the thickness of the fluid layer.

This equation comes from the filtering of a particular version of the Boussi-
nesq equations, which is valid for both a liquid and a perfect gas (see [170],
p. 45), where p is the static pressure. For a liquid, p satisfies

ap Jd __ d ap )
) =— T; 3.13
dt+ xj( pi;) ox; {Kaxj+ 3-13)
For a perfect gas, one can show within the Boussinesq approximation that
- _ @ _
L _LZ_ 45, (3.14)
Lo O po
with
1 3p
g=——2F (3.15)
Po 0O
This requires that
95
9 _r (3.16)
0 O

Such a result holds because relative increments of temperature, potential tem-
perature, and minus density are, within the Boussinesq approximation, equal
and much larger than the relative pressure increment (see [170], p. 46). If
we assume that the volumetric expansion coefficient, f, is constant, then ®
satisfies Eq (3.13), and the momentum equation becomes

ot du; o 1 ap d - _ -
FT ( ujily) = T 8_x,+ axj(2VSij+7}j)+2€ij3Quj — Bgidi30,
(3.17)
where T;; is defined by Eq. (3.5) and Tj(p ) by Eq. (3.9).

Although, p and © are still scalars transported by the flow [as in Eq. (3.7)],
they are not passive because they react with the velocity field, through gravity,
in the momentum equation. In fact, this system of equations is very useful for
studying stably stratified or thermally convective rotating flows. The equations
have been used in the latter case by Schmidt and Schumann [258] for a study
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of coherent structures in a thermally convective boundary layer. As already
stressed, Schmidt and Schumann used a one-point closure modeling point
of view within second-order closure transport equations with the coefficients
being determined from a spectral inertial-range analysis. This study displays
evidence of small-scale plumes as well as the existence of large-scale cold
updraufts and warm downdraufts at the top of the layer. Analogous LES work
was also carried out by Mason [199].

We will use Boussinesq LES equations in Chapter 8 for atmospheric storms
and oceanic deep-water formation studies.

3.3 Eddy viscosity and diffusivity assumption

By analogy with what is done in the framework of Reynolds equations for
the ensemble-averaged equations, the subgrid-scale tensors are in most of the
cases expressed in terms of eddy viscosity and diffusivity coefficients in the
form

_/3

- .= 1
Tij =2w(x, 1) S;j + ngl Sijs T(p) = Kki(X, 1) .
J

(3.18)

Then the LES equations for a flow of uniform density without rotation can be
written as

i, 9 1 9P 9 di; i
l+ (',ﬁj):———+7{(v+vt) <—l+_]>}’
) .

ot 0x; po 0x;  dx; 0x; 0x;
(3.19)
0p 0 __ 0 0p
ry 7 )= — — . 3.20
o P = 50 {(xm) 8xj} (3.20)
where
_
PZP—g,OoTzz (3.21)

is a modified pressure (macropressure), which can be determined with the aid
of the filtered continuity equation.

Several questions are in fact posed. The first one is how to determine the
eddy viscosity v, and the corresponding turbulent Prandtl number

Vt
Pri=—, (3.22)

Kt
and the second one concerns the validity of the eddy-viscosity assumption
itself. Indeed, it is based on an analogy with Newtonian fluids, which is cer-
tainly not fulfilled here. Let us briefly discuss this point. Molecular viscosity
v characterizes the momentum exchanges for a “macroscopic” fluid parcel



LES FORMALISM IN PHYSICAL SPACE

with the surrounding fluid owing to molecular diffusion across its interface.
Here, one assumes a wide separation between macroscopic and microscopic
scales,” and it is this separation that allows us to calculate these molecu-
lar exchange coefficients using kinetic theories of liquids or gases in which
molecules are assumed to follow some sort of Gaussian random walk. No such
scale separation exists in the LES problem, where one observes in general
a distribution of energy (kinetic-energy spectrum) continuously decreasing
from the energetic to the smallest dissipative scales even in inflectional shear
flows with vigorous coherent vortices. Because the cutoff scale Ax lies in
the middle of this spectrum, there is obviously no spectral gap at this level.
Furthermore, trajectories of fluid parcels are very far from a random walk, for
they may be either trapped around a vortex or strained in stagnation regions
between vortices.

We believe therefore that the lack of a spectral gap is the major draw-
back of the eddy-viscosity assumption in physical space and is responsible
for the fact that numerous numerical and even experimental a priori tests
(see, e.g., Clark et al. [46] and Liu et al. [188]) invalidate relations (3.18):
When a low-pass filter is, for instance, applied to DNS results, one can cal-
culate explicitly the subgrid-stress tensors and correlate them to the filtered
deformation. The correlation found is very poor and is of the order of 0.1
instead of 1. This justifies the development of models going beyond the
classical eddy-viscosity concept — for example, the spectral eddy viscosity
(see Chapter 4) and also the models presented in Chapter 6. However, LES
results based on classical eddy viscosities in physical space derived from
Smagorinsky or structure-function models may give very good results, as
will be seen later, from the point of view of vortex dynamics and statistical
predictions.

Another problem concerns the macropressure that has been introduced,
for it contains the unknown trace of the subgrid-stresses tensor. This is fine
if one is not interested in the exact value of the static pressure. If, however,
the latter is needed,’ then it is necessary to model the trace 7. A similar
problem arises in LES of compressible turbulence, for which the same type
of macropressure will be introduced (see Chapter 7).

Notice finally that the use of subgrid models in a rotating frame poses
realizability problems; these are discussed by Horiuti [127] and Domaradzki
and Horiuti [71].

2 As already emphasized in Chapter 1, this is valid except for hypersonic flows at very high
Mach numbers at which the two scales become of the same order and the equations of motion
have to be replaced by Boltzmann equations.

3 For instance, in cavitation studies, where cavitation occurs when the pressure goes below a
given threshold and may cause severe damage by bubble implosion to the material in contact
with the fluid.
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3.3.1 Smagorinsky’s model

As already pointed out, the most widely used eddy-viscosity model was pro-
posed by Smagorinsky [269]. He introduced an eddy viscosity that was sup-
posed to take into account subgrid-scale dissipation through a Kolmogorov
k=33 cascade. Smagorinsky’s model is an adaptation of Prandtl’s mixing-
length theory to subgrid-scale modeling. Prandtl assumes that the eddy vis-
cosity arising in RANS equations is proportional to a turbulence characteristic
scale (the mixing length) multiplied by a turbulence characteristic velocity.
In the same way, Smagorinsky supposes that the LES eddy viscosity is pro-
portional to the subgrid-scale characteristic length Ax and to a characteristic
subgrid-scale velocity

Vay = Ax |§|, (3.23)
based on the second invariant of the filtered-field deformation tensor
IS| = /288, (3.24)
Thus, Smagorinsky’s eddy viscosity is
v = (CsAx)?|S]. (3.25)

The constant may be calculated in isotropic turbulence, as was done by Lilly
[184]. Let us assume that k¢ = /Ax, the cutoff wavenumber in Fourier
space, lies within a k~>/3 Kolmogorov cascade

E(k) = Cx (esm)?? k7. (3.26)

One can show for a sharp filter in Fourier space that the dissipation rate of the
resolved kinetic energy is

- - kC
20(8;;Si) = / 2wk E (k)dk, (3.27)
0
which yields
< T _ 23 (T N\
(:5) = 3 e (1)
and
4\ S T\ 25 5 32
(esm)=(§> C (A—x) (5,5, (3.28)

Another expression of (€g,) may be obtained through an assumption of local
equilibrium, leading to

(€sm) = (2Vt§ij§ij> ) (3.29)
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which, using Smagorinsky’s expression for vy, can be expressed as
(em) = 22CEAx* ((DyDy) ). (3.30)

Equating the expressions of Egs. (3.28) and (3.30) for (e, ), we obtain

(3.31)

For a Gaussian field, the coefficient under the square root on the r.h.s. of
Eq. (3.31) is equal to one, and Smagorinsky’s constant will be approximated
by

1 /3Cx\
Cs~ — <—K> . (3.32)
T 2

This yields Cs ~ 0.18 for a Kolmogorov constant of 1.4. This value proves
to give acceptable results for LES of isotropic turbulence. However, most
researchers prefer Cs = 0.1, which represents a reduction by nearly a factor of
4 in the eddy viscosity. At this value, Smagorinsky’s model behaves reasonably
well for free-shear flows and for wall flows with wall laws, as in the channel
LES of Moin and Kim [210]. Let us mention also the work of Breuer and Jovivi
[30] on incompressible LES of a separated flow around a two-dimensional
airfoil at an incidence angle of 18°. Such a calculation also displays quite
nicely the three-dimensional vortical structure of such a flow, including a
Karman street. A valuable assessment study of various subgrid models applied
to some well-defined test cases for which experiments exist has been carried
out by Rodi et al. [244].

If one does not want to play with Cgs at the boundary, Smagorinsky’s
model is too dissipative in the presence of a wall; moreover, it does not work
in particular for transition in a boundary-layer developing on a flat plate:
It artificially relaminarizes the flow if the upstream perturbation is not high
enough. This is due to the heavy influence in the eddy viscosity of the velocity
gradient in the direction normal to the wall and to an improper behavior of
the model at the wall, which we are going to discuss in more detail. A good
review of this problem is given by Meneveau and Katz [202]. Let us assume
that the velocity components close to the wall may be expanded in Taylor
series as

u(x,y,z,t) = ay(x, z, 1)y + ar(x, z, t)y2 + as(x, z, t)y3 4+,
v(x,y,z,t)=bi(x,z,t)y + by(x, z, t)y2 + b3(x, z, t)y3 + -,

w(x,y,z,t) =ci(x,z, )y + ca(x, z, t)y2 + c3(x, z, t)y3 + -
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Using the continuity equation, we obtain up to the first order

da dc
by +2by+ 2Ly =0,
0x 0z

and hence | = 0. Introducing wall units (recalled in Chapter 5), we then have
for y* — 0

uoyt; woyt; v (y+)2. (3.33)

Let us consider the component 71, = u v — uv of the subgrid-scale tensor.
Close to the wall, we have

Tip o (7). (3.34)

The prediction of Smagorinsky’s model for this component is
= NG 2,GQ 2 (Ou ?
T]z =2vt(x,t)512=2(CgAx) |S|Slz %2(C3Ax) 8_ . (335)
¥

Close to the wall, du /dy is finite, and the Smagorinsky model yields therefore
a finite value for 7},. This justifies Smagorinsky’s dynamic approach, which
will be presented now, where the constant is dynamically adjusted to the flow
conditions.

As noted by Lilly [183, 185, 187], the eddy viscosity given by Eq. (3.23)
may be expressed by taking a different value for the velocity va, through
Kolmogorov’s relation corresponding to Eq. (1.42). This yields in the latter
case

v~ e PAxY ~ el/3kg4/3, (3.36)

an expression that was also used by Schmidt and Schumann [258] under
a slightly different form based on the rms kinetic energy. A review of these
models, which have analogies with the structure-function model, may be found
in Muchinski [215].

3.3.2 Dynamic Smagorinsky model

The underlying principle of the dynamic model is to extract information con-
cerning a given eddy-viscosity model via a double filtering in physical space
(Germano [109]). Most of the historical developments have been done with
Smagorinsky’s model, but the dynamic procedure applies in fact to other types
of eddy viscosities such as those used in the structure-function model. The
following presentation is very close to that in Lesieur [170].

We start with a regular LES corresponding to a “bar-filter” of width Ax, an
operator associating a function (which may be a scalar, a vector, or a tensor)
f(X, t) with the function f(¥, ). We then define a second “test filter” tilde
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of larger width e Ax (for instance o = 2), associating f(x, ) with f(X, 7).
We then have two filter operators, bar and tilde, that apply to functions, the
product being tilde o bar.* This product, applied to (X, ¢), means that we first
apply to f the bar filter (to yield f) and then the filde filter to obtain f. Let
us first apply this filter product to the Navier—Stokes equation (with constant
density). The subgrid-scale tensor of the field u; is obtained from Eq. (3.5)
with the replacement of the filter bar by the double filter:

We consider now the field i; per se’ and evaluate the resolved turbulent
stresses obtained by application of the filde filter. We can then write

Lyj = iyit; — it (3.38)
We now apply the tilde filter to Eq. (3.5), which leads to

~

T;'j = u'iu'j —Uju;. (339)

Z
Z

Adding Eqgs. (3.38) and (3.39) and using Eq. (3.37), we obtain
Liy=T; — T (3.40)

This expression is called Germano’s identity. On the r.h.s., 7;; and i; have
to be modeled, whereas the Lh.s. £;; (the resolved stresses) can be explicitly
calculated by applying the tilde filter to i;.

We use Smagorinsky’s model expression for the subgrid stresses related
to the bar filter and “tilde-filter” it to get

~

1~ —
T — §Tzz iy = 2A;;C, (3.41)
where the constant C is equal to 2C2, and

Aij = (Ax)2 |§|Sij-

We now have to determine 7;;, the stress resulting from the filter product. This
is again obtained using the Smagorinsky model, which yields

1
Ty — 370 8y = 25,C, (3.42)
with
By = o«*(Ax)? |S] Sy.

* The product is in the sense of product of operators.
3 The field is considered as if it were the instantaneous field.
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Subtracting Eq. (3.41) from Eq. (3.42) yields with the aid of Germano’s iden-
tity

. .
Lij = 3L by = 28B;;C = 2A;C.

This is a nice result relating the (unknown) model coefficient to the resolved
stresses. However, there are some difficulties. First, one removes C from the
filtering as if it were constant,® leading to

1
Ly = 3Lu 8 = 2CM;. (3.43)
with
My = By — Ay

All the terms of Eq. (3.43) may now be determined with the aid of . Unfor-
tunately, there are five independent equations for only one variable C, and thus
the problem is overdetermined. A first solution proposed by Germano [109]
is to multiply Eq. (3.43) tensorially by S; ; to get
C= ELL‘S_'” (3.44)
2 M;; Sij
(and owing to incompressibility, S;; = 0). This provides finally a dynamical
evaluation of C(X, ¢), which can be used in the LES of the bar field iz. However,
problems still arise: In tests using channel-flow data obtained from DNS,
Germano [109] showed that the denominator in Eq. (3.44) could locally vanish
or become sufficiently small to yield computational instabilities. Lilly [186]
chose to determine the value of C in Eq. (3.43) by a variational approach
using a least-squares method, which gives
_ 1 LyM;

C=
2
2 M3

(3.45)
and removes the indeterminacy of Eq. (3.43). However, and as discussed in
Lesieur ([170], p. 405), the analysis of DNS data reveals that the C field
predicted by the models (3.44) or (3.45) varies strongly in space and con-
tains a significant fraction of negative values with a variance that may be ten
times higher than the square mean. So, the removal of C from the filtering
operation is not really justified and the model exhibits some mathematical
inconsistencies. The possibility of negative C is an advantage of the model
because it allows a sort of backscatter in physical space, but very large nega-
tive values of the eddy viscosity destabilize the numerical simulation, yielding

® This is in some way contradictory to the original aim of having a dynamic evaluation of C
depending on space and time.
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a nonphysical growth of the resolved-scales energy. The cure often adopted
to avoid excessively large values of C consists in averaging the numerators
and denominators of (3.44) and (3.45) over space, time, or both, thereby los-
ing some of the conceptual advantages of the “dynamic” local formulation.
Averaging over direction of flow homogeneity has been a popular choice, and
good results have been obtained by Germano [109] and Piomelli and Balaras
[239], who took averages in planes parallel to the walls in their channel-flow
simulation. We remark that the same thing will be done with success when
averaging the dynamic spectral eddy viscosity in channel-flow LES (see Chap-
ter 5). Meneveau et al. [201] adopted a Lagrangian viewpoint and obtained
good results in a dynamic Smagorinsky approach in which the constant C
was averaged following the flow motion (see also Piomelli et al. [238] and
Piomelli and Balaras [239]). This is in fact more physical as far as coherent
vortices are concerned. It can be shown that the dynamic model gives a zero
subgrid-scale stress at the wall, where L;; vanishes, which is a great advan-
tage with respect to the original Smagorinsky model; it also gives the proper
asymptotic behavior near the wall.
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4 Spectral LES for isotropic turbulence

We have seen that a major drawback of the eddy viscosity assumption in
physical space is the nonexistence of a spectral gap between resolved and
subgrid scales. This is an argument in favor of working in Fourier space, where
we will see that the lack of a spectral gap may be dealt with in some sense.

4.1 Spectral eddy viscosity and diffusivity

We assume that the Navier—Stokes equation is written in Fourier space. This
requires statistical homogeneity in the three directions of space, but we will see
in the following how to handle flows with only one direction of inhomogeneity.
Let ﬁl-(l;, t) and ,6(/;, t) be the spatial Fourier transforms of, respectively, the
velocity and passive-scalar fields introduced in Chapter 1. As already stressed,
they are defined in the framework of generalized functions.! The filter consists
of a sharp cutoff filter simply clipping all the modes larger than k¢, where
kc = w/Ax is the cutoff wavenumber obtained when one uses a pseudo-
spectral method in a given direction of periodicity.
We write the Navier—Stokes equation in Fourier space as

9 - - -
Eﬁi(k, 1) + [v + wik|ke) 1K (k, 1)

L pPti=k
= —ikn P(k) | wj(p, )im(q, t)dp. 4.1
1Pl 1<kc

The spectral eddy viscosity vt(l;|kc) is defined by

- - . [pta=k R L
v(klke)k*iti(k, 1) = ik Py (k) uj(p, im(q, )dp.  (4.2)

|Blorlg|>kc

! Discretized equivalents correspond to the discrete Fourier transforms of flows in spatially
periodic domains.
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-

At this point, it may not be positive or even real. The condition p + ¢ =k
is a “resonant-triad condition” resulting from the convolution coming from
the Fourier transform of a product. The r.h.s. of Eq. (4.1) corresponds to a
resolved transfer. A spectral eddy diffusivity for the passive scalar may be
defined in the same way by writing the passive-scalar equation in Fourier
space

pri=k

8 ~ 7 7 ~ 7 . ~ End ~ - el
oo+ [+ kRl = =ity [ iy(G.0pG. 047
[pl.1gl<kc
(4.3)
with
. L - pHi=k _ L
kW pE 0 =ik, [ aG0sG.0dp. G
‘plor‘q|>kC

Expressions (4.2) and (4.4) give exact expressions of the eddy coefficients.
They are, however, useless because they involve subgrid quantities. In fact, the
eddy coefficients can be evaluated at the level of kinetic-energy and passive-
scalar spectra evolution equations obtained with the aid of two-point closures
of three-dimensional isotropic turbulence.

It is in this context that the concept of k-dependent eddy viscosity was first
introduced by Kraichnan [147]. The spectral eddy diffusivity for a passive
scalar was introduced by Chollet and Lesieur [42]. Kraichnan used the so-
called test-field model. We work using a slightly different closure called the
eddy-damped quasi-normal Markovian theory introduced by Orszag [224,
225] (see also André and Lesieur [6] and Lesieur [170] for details). We first
briefly recall the main lines of this model.

4.2 EDQNM theory

Inthe EDQNM theory, which is easily manageable only in the case of isotropic
turbulence, the fourth-order cumulants in the hierarchy of moments equations
are supposed to relax the third-order moments linearly in the same quali-
tative way that the molecular viscosity does. Thus, a time 6y, characterizing
this relaxation is introduced. The EDQNM gives for isotropic turbulence the
following evolution equation for the kinetic-energy spectrum E (%, ¢):

9 2
— + 20k | E(k, 1)
ot

k
- f /A dp dg O 0)- k. p.4)E@. O Ep. 1) = pPEGK ]

(4.5)
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where the integration is carried out in the domain A of the (p, ¢) plane
such that (k, p, ¢) can be the sides of a triangle and thus satisfy triangular
inequalities. The nondimensional coefficient

bk, p.g) = L0y +2) (46)

is defined in terms of the cosines (x, y, z) of the interior angles of the triangle
formed by the resonant triad (k, p, ¢). The time 6y, (¢) is given by

1 — e_[:ukpq""u(kz"_pz"_qz)]t

Okpg = ton F V2 P2+ q0) 4.7)
with
Kipg = Mk + Up + Uy
and
i 12
e =a [ fo PEp. r)dp} | 48)

The constant a; is adjusted in such a way that the kinetic-energy flux is equal
to € in a Kolmogorov cascade of infinite length, as done in André and Lesieur
[6]. One finds a; = 0.218 C13</ . An analogous equation may be written for
the passive-scalar spectrum E,(k, t) with a scalar transfer involving products
EE,. Let us present now some recent EDQNM results of decaying isotropic
turbulence at high or very high Reynolds number obtained by Lesieur and
Ossia[174]. The code used is the one developed by Lesieur and Schertzer [164]
in which nonlocal interactions? are treated separately and included analytically
in the kinetic-energy transfer term in the EDQNM spectral evolution equation.
Details are also given in Lesieur ([170], pp. 231-235). Wavenumbers are
discretized logarithmically in the form

k; = 8k 2UE—D/F (4.9)

with L ranging from 1 to a maximum value Lg. In all calculations, F* was
taken equal to 8, which is twice as large as used in former calculations of this
type done in Grenoble and should guarantee a higher precision.® Calling kpax
the maximum wavenumber, we have also

kmax 3/4
b0 = AR o), (4.10)

2 Nonlocal interactions are those involving extremely distinct wavenumbers and thus very
elongated triads.

3 Comparisons with calculations done with £ = 4 show that the difference of results is not
very substantial, and so the latter value should be recommended, considering the much
shorter computational times in this case.
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Figure 4.1. Kinetic-energy spectrum evolution in a decaying EDQNM calculation with Ry, ) ~
1.70 x 10°.

with 4 equal to 1 and 3 in the decaying and forced calculations, respectively
(Ry;(0) 1s a large-scale Reynolds number defined momentarily). This is lower
than the value 8 proposed in Lesieur [170], but it permits a good-enough
capturing of the dissipative range and results in a substantial reduction of
computing time. These calculations have in fact been done on a PC/LINUX
machine.

In decaying calculations, the initial kinetic-energy spectrum is

sk
E(k,0)= A; k¥ exp [_Ek-(O)Z] , (4.11)

where A is a normalization constant chosen such that fok“’“E (k, 0)dk =
%v% = % The time unit is the initial large-eddy turnover time [vok;(0)]~".
The constant a; corresponds to Cx = 1.40. The initial large-scale Reynolds
number is Ry, ) = vo/vk;(0).

We first present a calculation with s = 8, §k = 0.125, k;(0) = 2, and
Ry,0) &~ 1.70 x 10°. Figure 4.1 displays the time evolution of the kinetic-
energy spectrum E(k, t) for this run, up to 100 turnover times. We see very
clearly the establishment of an ultraviolet inertial-type range whose slope may
be checked to be (on this log—log plot) very close to the k~>/3 Kolmogorov law
along more than five decades. In fact this point will be explored later by con-
sidering compensated spectra € ~2/3k>/3 E(k, t). We see also on the figure the
rapid formation of a k* infrared spectrum. This corresponds to the k* infrared
spectral backscatter, which will be discussed later. At the end of the evolution
(t = 100), the Reynolds number based on the Taylor microscale and already
defined in Chapter 1 is R; & 72,600. This is huge compared with laboratory
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Figure 4.2. Kolmogorov-compensated kinetic-energy spectrum evolution (in dissipative units)
corresponding to the EDQNM run of Figure 4.1.

or even environmental situations and might be encountered in astrophysics.
Figure 4.2 shows for the run the Mammoth-shaped function M (k,, t) (intro-
duced Chapter 1 on the r.h.s. of Eq. (1.47), with k, = kn). The vertical lines
correspond to spectra early at times. At later times, we get a perfect super-
position of the curves at high wavenumbers, which indicates the validity of
Kolmogorov similarity. At low wavenumbers, the dark area represents a decay
of compensated spectra, which can be interpreted as the “Mammoth losing
fat from the back.”* At the end of the evolution there is a two-decade real
compensated plateau at Cx = 1.4, and the spectral-bump size is one decade
long. It is clear here that the limit of infinite Reynolds number, which would
yield a Kolmogorov k=373
ical view that cannot be reproduced in these calculations. However, Lesieur
and Ossia [174] show that at such a high Reynolds number a limit curve is ob-
tained for the skewness s(¢) defined by Eq. (1.33). The curve can be obtained
from the following relation (see Orszag [225]):

spectrum extending to infinity, is just a mathemat-

1352 oo
=(—=) D®™>"? T (k, t)dk, 4.12
s =55 ) o0 [ erED @.12)

4 A former French minister for education used to say that he would remove the fat off the
national education mammoth.
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where T'(k, t) is the kinetic-energy transfer given here by the r.h.s. of Eq. (4.5).
The time evolution from zero to infinity of this limit skewness displays first a
rise to the maximum value of 1.132 attained at ¢ ~ 4.1, then an abrupt drop
to a plateau value of 0.547 reached at ¢ ~ 4.8, and is conserved exactly above
up to ¢t = 100. This evolution is explained in Lesieur [170] as a transition
between an initial inviscid skewness growth’ to a skewness determined by a
balance between vortex stretching and molecular dissipation terms in the r.h.s.
of the enstrophy time-evolution equation. This yields a skewness constant
with time if enstrophy and palinstrophy are assumed to be dominated by
inertial and dissipative wavenumbers and scale on Kolmogorov dissipative
units (Batchelor [18], Orszag [225]).

Let us return to the EDQNM Mammoth-shape compensated spectra. As
stressed in Chapter 1, similar behaviors may be obtained from experimen-
tal data, with similar type of scalings, as reviewed for instance by Coantic
and Lasserre [47], who have developed an analytical model to account sat-
isfactorily for Reynolds-number changes in the experiments. The bump-
shaped spectrum had already been observed in the EDQNM calculations of
André and Lesieur [6]. The bump was interpreted as a “bottleneck effect” by
Falkovich [89]. We will return to this point later. Concerning the departure
from Kolmogorov similarity at small wavenumbers, we will see that the latter
cannot be achieved with the s = 8 value taken initially; it is only for s = 1
that it may hold.

4.3 EDQNM plateau-peak model

As we did for the deterministic velocity and scalar fluctuations, we split the
EDQNM kinetic-energy and scalar-variance transfers into interactions in-
volving only modes smaller than k¢ and those involving the others. The equa-
tions for the supergrid-scale velocity £ (k, ) and scalar £ ,(k, t) spectra are,
respectively,

0 _
(5 + 2vk2> E(k,t) = T (k. t) + Top (k. 1) (4.13)
and
3+2 KVE k,t)y=T" (k,t)+ T’ (k, 1) (4.14)
at K P ? — T <kc 3 ) >kC( ’ 4 N

where T_;.(k,t) and T” 4k, 1) are the spectral transfers corresponding to
resolved triads such that k, p, ¢ < kc and T~ (resp. T >p kc) transfer to modes

5 We recall that Lesieur ([170], pp. 190-191) has shown for an initial-value problem in the
framework of the Euler equation that, if s(#) grows with time, or remains constant, or even
decays slower than /!, then enstrophy will blow up in a finite time.

55



56

LARGE-EDDY SIMULATIONS OF TURBULENCE

such that k& < k¢, p and (or) g > kc. We assume first that £ < k¢ with both
modes being larger than £;, the kinetic-energy peak. Expansions in powers of
the small parameter &/ k¢ yield to the lowest order

Toge(k, 1) = =207 I E(k, 1), (4.15)

L[~ IE(p, 1)
X =— [ o |5E(p.t)+p———| dp, 4.16
Vi 15 Ji. 0pp|: (p.O)+p op i| % (4.16)
T (k1) = =2 K Er(k, 1), (4.17)

o0 2 *
koo = —/ G(fpp E(p,t)dp. (4.18)
3 Ji

Let us start by assuming a k—>/3 inertial range at wavenumbers greater than
kc. We obtain

V> = 0.441 Cx ? [%’:}C)} - (4.19)

and
= ]‘:fz) (4.20)

with
Pr® =0.6. (4.21)

Here, E(kc) is the kinetic-energy spectrum at the cutoff kc. The 0.6 value for
the Prandt]l number is in fact the highest one permitted by the choice of two
further adjustable constants arising in the EDQNM passive-scalar equation
(see [170]). If we assume for instance a Kolmogorov constant of 1.4 in the
energy cascade, the constant in front of Eq. (4.19) will be 0.267. When £ is
close to k¢, the numerical evaluation of the EDQNM transfers yields

Tk (k, t) = —2v(klkc) k> E(k, 1) (4.22)
and

Tfkc(k, t) = =2kklkc) K E(k, t) (4.23)
with

w(klke) = K (ﬁ) Ve (4.24)
kc
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Figure 4.3. Eddy viscosity, eddy diffusiv-
ity, and turbulent Prandtl number in spectral
space determined using the EDQNM theory.
(From [42].)
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and

(ki) = C (-"--) €, (4.25)
kc

where v® and «° are the asymptotic values given by Eqs (4.19), (4.20), and
(4.21), and K (x) and C(x) are nondimensional functions equal to 1 forx = 0.
As shown also by Kraichnan’s test-field model calculations [147], K(x) has
a plateau value at 1 up to k/kc &~ 1/3. Above, it displays a strong peak (cusp
behavior). Let us mention that Kraichnan did not point out the scaling of the
eddy viscosity against [ E(kc)/ kc]'/?, which turns out to be essential for LES
purposes. Indeed, when the energy spectrum decreases rapidly at infinity (for
instance during the initial stage of decay in isotropic turbulence), the eddy
viscosity will be very low and inactive. However, we have [E(kc)/kc]'/? ~
e'BPke *3 in an inertial-range expression. If we keep this inertial-range-type
eddy viscosity before the establishment of the k—/3 range and evaluate €
as proportional to EY 2k,-, it may substantially increase the eddy viscosity
and work against the cascade development. We will explain in the following
that the plateau-peak model may be generalized to spectra different from the
Kolmogorov one at the cutoff (spectral-dynamic model).

It was shown in [42] that C(x) behaves qualitatively as K(x) (plateau
at 1 and positive peak) and that the spectral turbulent Prandtl number
vi(k|kc)/Kki(k|kc) is approximately constant and thus equal to 0.6 as given
by Eq. (4.21). These three quantities (eddy viscosity, eddy diffusivity, and tur-
bulent Prandtl number) taken from [42] are shown in Figure 4.3 as a function
of k/kc. In the figure, the eddy coefficients are normalized by \fE'ZkE)7l}C
with Cx = 1.4.
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It is clear that the plateau part corresponds to the usual eddy-coefficients
assumption when one goes back to physical space,® and thus the “peak” part
goes beyond the scale-separation assumption inherent in the classical eddy-
viscosity and diffusivity concepts. The peak is mostly due to semilocal interac-
tions across kc: Near the cutoff wavenumber, the main nonlinear interactions
between the resolved and unresolved scales involve the smallest eddies of the
former and the largest eddies of the latter (such that p << k ~ g ~ kc¢). The
peak also contains possible backscatter contributions (which are however very
small if k¢ lies in a Kolmogorov cascade) coming from subgrid modes larger
than kc. This point will be detailed in the following.

As shown in [43], the plateau-peak behavior of K (x) can be approximately
expresssed with the following analytical expression:

K(x)=1434.5¢3%/~ (4.26)

We will see later another analytic expression of this spectral eddy viscosity in
terms of hyperviscosities.

The plateau-peak model consists of using these eddy viscosities in the
deterministic equations (4.1) and (4.3). One advantage of such a subgrid-
scale modeling is that it is correct from an energy-transfer viewpoint. It is
also able to deal with a continuous spectrum at the cutoff, which is a great
asset with respect to the plain eddy-viscosity assumption in physical space.
However, the assumption of real eddy coefficients is constraining and neglects
the possible phase effects arising in the neighborhood of kc.

4.3.1 Spectral-dynamic model

Another drawback of the plateau-peak model is that it is restricted to the case
in which kc lies within a £~/ Kolmogorov cascade. Fortunately, this can be
cured by introducing the spectral-dynamic model. We assume now that the
kinetic-energy spectrum is o« k=" for k > k¢ with m not necessarily equal to
5/3. We modify the spectral eddy viscosity as

5 K\ [ E(ke)]"?
wklke) = 031 Ce— 23 —mo— Mg (L) [ £k 4.27)
m—+ 1 kc kc

for m < 3. This expression is exact for k& << k¢ within the same nonlocal
expansions of the EDQNM theory, as shown in Métais and Lesieur [205]. We
retain the peak shape through K (k/kc) to be consistent with the Kolmogorov
spectrum expression of the eddy viscosity. For m > 3, the scaling is no longer

6 There is, however, a slight difference at this level because going back to physical space
will give v>° multiplied by the filtered-velocity Laplacian, whereas, in the physical-space
formalism, the eddy viscosity is under a divergence operator in Eq. (3.19).
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valid, and the eddy viscosity will be set equal to zero. Indeed, we are very close
to a DNS for such spectra. In the spectral-dynamic model, the exponent m is
determined through the LES with the aid of least-squares fits of the kinetic-
energy spectrum close to the cutoff. We may also check that the turbulent
Prandtl number is given by

Pr'=0.18 (5 — m) (4.28)

(see Métais and Lesieur [205] and Lesieur [170], p. 386). This value does not
depend of the Kolmogorov and model constants. Being able to use a variable
turbulent Prandtl number is a great advantage in LES of heated or variable-
density flows. This possibility exists also for the dynamic models in physical
space such as the dynamic Smagorinsky model presented in Chapter 3.

4.3.2 Spectral random backscatter

There are many discussions on LES related to the concept of random backscat-
ter, one aspect of which in physical space is the negativeness of the eddy
viscosity in local regions. We give here some elements of this discussion in
Fourier space. We return to the EDQNM kinetic-energy transfer 7'(k, ¢) in
three-dimensional isotropic turbulence given by the r.h.s. of Eq. (4.5). Such a
transfer may be rewritten by a symmetrization with respect to p and ¢ in the in-
tegrand: In the first term a(k, p, q) = (1/2)[b(k, p, q) + b(k, q, p)] appears,
which may be shown to be positive (see Orszag [225] and Lesieur [170]).
The second term is proportional to k>E(k, t). This ensures the realizability
(positiveness of the kinetic-energy spectrum) of the closure. We consider now
some arbitrary cutoff wavenumber k¢, which is not necessarily in the middle
of an inertial range. The subgrid kinetic-energy transfer across k¢ is then

Ta(k) = Aps — Bo, (4.29)
where Agg, the backscatter term, is given by
oo 1 1— 2
Ags =k | dp / =
ke ki2p 4
P (k _p\
x| 1+ —+ (— — 2—z> Okpg E(P)E(q) d-z. (4.30)
q q q

This term is obviously positive. The second term can be written as

e’} 1
Bp = K*E(k) dp / Orpg(1 — 2°)
ke k/2p

P’ pz\ p? P ps
« [(F _ 7) Lb@+ <1 L+ W) E(p>] dz. (431)
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These expressions can be simplified if & << k¢ (which implies that p and ¢
are of the same order). Then,

14 o0 E(p)?
Ags = —k* 00,y ——=—dp, 4.32
BS 15 /k 0pp p2 p ( )

Bp = 2v™° KE(k), (4.33)

where the eddy viscosity v has been given in Eq. (4.16). If k and k¢ both
lie in the inertial range (with k& << k¢), the k* backscatter is of the order of
k490,kc~,kck6 'E (kc)?, and the eddy-viscosity contribution is of the order of
K E (k)60, ke k- kc E (kc). Hence, in this case

Ags _ ( k\? Elko)
Bp (E) E(k)’

which is very small for any decreasing kinetic-energy spectrum. This justifies
the fact that the plateau part of the spectral eddy viscosity considered here
does not include any k* backscatter contribution. However, backscatter is
important when k is close to k¢, but the coefficient in front of k* is not a
simple function of k; moreover, it is difficult to tell the exact £ dependence of
the backscatter in this case or of the eddy-viscosity term Bp. What is certain
is that the plateau-peak eddy viscosity does properly include the backscatter
at the level of correct kinetic-energy exchanges.

In fact, the k* backscatter transfer plays an important role in the in-
frared part of the spectrum (k — 0). We assume that kc = k; corresponds
to the peak of the spectrum and again & << k¢. Now the backscatter given by
Eq. (4.32) dominates the local transfers. It injects energy in very large scales
through resonant interaction of two energetic modes, and it is responsible for
the immediate emergence of an infrared k* spectrum in isotropic decaying tur-
bulence when energy is injected initially at a peak at &;. This point, predicted
by two-point closures (see Lesieur and Schertzer [ 164] and Lesieur [170]), was
first checked in LES of isotropic turbulence by Lesieur and Rogallo ([165];
see Figure 4.4) using the plateau-peak model, and we will confirm it with LES
using the spectral-dynamic model.

In forced stationary turbulence obtained when a random statistically sta-
tionary forcing is applied on a narrow spectral band around £;, the net infrared
transfer is given by the combination of the backscatter and the eddy-viscous
drain. It should vanish because the energy spectrum is time invariant. There is
then a balance between the k* backscatter and the k% E (k) drain, which yields
a k? equipartition spectrum.

We stress finally that in a turbulent mixing-layer calculation, Leith [162]
used a k* random backscatter forcing as a way to inject energy into the large
scales.

(4.34)
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4.4 Return to the bump

We have already mentioned for decaying isotropic turbulence the “bump”
existing at the edge of the Kolmogorov A —>/3 inertial range before the dissi-
pative range. In fact, forced EDQNM calculations with a narrow forcing at
k; do show the persistence of the bump (Mestayer et al. [203], Lesieur and
Ossia [174]). In the calculations of Mestayer et al. [203], the bump did dis-
appear with the removal of nonlocal triads (k, p, ¢) of the type k < ap (with
a ~2YF — 12 0.2 when taking F = 4). These elongated nonlocal interac-
tions correspond to an energy flux given by (see [170], p. 233, for details)

2 [k Y OF
Mo (k, 1) = — / K2 EK)dk / By [SE(p) + p o2 1dp
15 Jo sup(k,k'/a) ap

14 k ) , 00 E 2
-5 K dk / Ok pp (—P;)dp. (4.35)
0 sup(k,k' /a) p

The first term in Eq. (4.35) is of the “eddy-viscous type”; the second is of the
“backscatter type,” but the latter may be checked to be negligible in the energy
cascade, as already stressed. No real explanation for the bump disappearance
is given in Mestayer et al. [203], who just note that “the bumps appear to result
mainly from a lack of erosion of the spectra by elongated non-local interactions
when approaching the viscous cutoff.” Falkovich [89] interpreted the bump
as a “bottleneck phenomenon . .. where a viscous suppression of small scale
modes removes some triads from nonlinear interactions . .. which leads to a
pileup of the energy in the inertial interval of scales.” In fact, this may be made
more quantitative by looking back at the evaluation of the elongated nonlocal
flux given by Eq. (4.35) carried out in [203]. It is positive and approximately
constant in the inertial range. We will assume that it would remain constant in
a k—>/3 range extending to infinity. However, because of its structure in terms
of integrals to infinity upon the energy spectrum, the elongated flux should
start to decrease rapidly when feeling nonlocally the dissipative range, which
is much further upstream. If we assume that the local and other nonlocal fluxes
are not yet affected by dissipation, and hence are still constant, the global flux
will be decreased, implying a positive kinetic-energy transfer, resulting in the
bump.

4.5 Other types of spectral eddy viscosities

4.5.1 Heisenberg’s eddy viscosity

In fact, the concept of a wavenumber-dependant eddy viscosity may already be
found in Heisenberg ([120], see also Mc Comb [200] for details). Heisenberg
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introduced this eddy viscosity to model the evolution of the kinetic-energy
spectrum. Within this model, and as recalled by Schumann [260], the deriva-
tive of the eddy viscosity with respect to & is proportional to —/E(k)/ k3.
If we assume some power-law dependence for the kinetic-energy spectrum,
Heisenberg’s eddy viscosity will indeed scale as \/ E(k)/ k. This is a type of
local spectral eddy viscosity, which is less rich than the nonlocal plateau-peak
formulation. It was used by Aubry et al. [10] to model equivalent subgrid
scales in the dynamical system describing the evolution of a turbulent bound-
ary layer within a proper orthogonal decomposition (POD) approach. We
recall that in the POD (see Holmes et al. [126] for a review), the velocity
vector is projected on the eigenvectors of the Reynolds-stress tensor. In this
context, ejection or sweep events occurring in the boundary layer appeared as
particular events in a chaotic dynamical system.

4.5.2 RNG analysis

Another approach, the renormalization group (RNG) method, originally de-
veloped by Forster et al. [97] and Fournier [99] for isotropic turbulence, has
been applied by Yakhot and Orszag [293] and McComb [200] to LES with
an eddy viscosity proportional to /E(kc)/ kc. Let us recall briefly the RNG
formalism in Fournier’s work. In classical RNG analysis applied to the physics
of critical phenomena, the dimension d of space is considered as a variable pa-
rameter. In general, the problem can be solved analytically for the dimension
d = 4. Then the solution for d = 4 — € is obtained from this solution through
expansions in powers of the parameter €, which is assumed to be small. The
solution for d = 3 is recovered by making € = 1. Although slightly awkward,
the procedure works remarkably well for various problems such as spin dy-
namics in ferromagnetic systems. Forster et al. [97] adapted the method to
the Navier—Stokes equation with a varying dimension of space. In contrast,
Fournier works with a fixed dimension of space (three), and he considers a
kinetic-energy forcing term proportional to £~ with a varying exponent 7.
One supposes at a given time that energy is distributed on a wavenumber inter-
val [0, A]. Let A << A,andlet A — § A be a sort of cutoff wavenumber with
8 A /A fixed. The velocities corresponding to modes in the shell [A — 6 A, A]
are solved, through Feynman diagrammatic perturbation techniques involving
Green-function operators, in terms of modes smaller than A — §A. Statistical
independence between the “subgrid” and “supergrid” modes is further as-
sumed. A new Navier—Stokes equation with renormalized eddy viscosity and
forcing, involving the wavenumber interval [0, A — § A], is written. One has
thus eliminated (“decimated”) the shell [A — § A, A]. As stressed by Lesieur
([170] p. 253), other terms, called “nonpertinent,” still arise at this level, but
these will vanish after an infinite number of decimations. Then the operation
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is iterated an infinite number of times to let the cutoff A go to zero. The small
parameter here is € =3 4+ ». For € > 0, one obtains (Fournier and Frisch
[100], Lesieur [170], p. 255) an eddy viscosity proportional to \/E(A)/A.
However, to obtain a Kolmogorov k~>/3 kinetic-energy spectrum requires
r = 1, so that the “small” parameter is now 4, which is excessive and cannot
guarantee the convergence of the expansions. Furthermore, this expression of
the renormalized eddy viscositiy is valid only for A — 0, whereas it is used
for LES purposes with a finite cutoff for which the nonpertinent terms cannot
be neglected. Finally, there is no general consensus about the determination
of the numerical constant arising in the eddy viscosity.

These results indicate that the plateau-peak model has the richest dynamics

of all the Heisenberg-type ~./ E (kc)/ kc eddy viscosities.

4.6 Anterior spectral LES of isotropic turbulence

The plateau-peak eddy viscosity was applied by Chollet and Lesieur [41] to
the first spectral LES of three-dimensional isotropic turbulence (a pseudo-
spectral method with a resolution of 323 Fourier collocation modes). They
studied decaying turbulence; there is no molecular viscosity,” and the initial
energy spectrum decreases rapidly at infinity. During the first stage the kinetic
energy is transferred toward kc accompanied by a growth of the resolved
enstrophy D(t). At about four initial large-eddy turnover times D(0)~!/2,
the enstrophy reaches a maximum and decreases, whereas the kinetic-energy
spectrum decays self-similarly with an approximate k=>/3 slope.

Large-eddy simulations of a passive scalar at the same resolution were
performed by these authors in 1982 with qualitatively the same results and
the formation of a k—>/ Corrsin-Oboukhov inertial-convective scalar spec-
trum. These results are presented in Lesieur ([170], p. 389). However, using
323 collocation points gives extremely low resolution and is totally unable to
capture the fine features of isotropic turbulence. We show in Figure 4.4 an
analogous LES at a resolution of 1283 Fourier modes® carried out by Lesieur
and Rogallo [165]. The initial velocity and scalar spectra are proportional
with a Gaussian ultraviolet behavior and a k% infrared spectrum. It can be
checked that Kolmogorov and Corrsin—-Oboukhov k~>/3 cascades are estab-
lished. Afterward, the kinetic-energy spectrum decays self-similarly with a
spectral slope between —5/3 and —2. The scalar spectrum seems to have a

7 It is a nice behavior of these large-eddy simulations to allow for “Euler LES” without any
numerical energy diffusion. The question posed is of course of the relevance of the solutions
found with respect to real solutions of Euler equations or of the Navier—Stokes equation in
the limit of zero viscosity.

8 Such a simulation was not dealiased, but it is now well recognized that, in contrast to DNS,
aliasing effects may be important in spectral LES and should be eliminated.
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Figure 4.4. Three-dimensional isotropic decaying turbulence showing decay of kinetic-energy
(a) and passive-scalar (b) spectra in the LES of Lesieur and Rogallo [165] using the plateau-peak
eddy viscosity.

very short inertial-convective range close to the cutoff and a very wide range
shallower than ! in the large scales. Here, the scalar decays in time much
faster than the temperature. This anomalous range was explained by Métais
and Lesieur [205] as due to the quasi-two-dimensional character of the scalar
diffusion in the large scales, leading to large-scale intermittency of the scalar.
More precisely, the scalar diffusion seems to be dominated by the effect of
the coherent vortices already considered in Chapter 2. More details on this
anomalous k~! range may be found in Lesieur ([170], p. 211).

4.6.1 Double filtering in Fourier space

These spectral LESs of decaying isotropic turbulence and associated scalar
mixing, together with those of Métais and Lesieur [205], have been used to
compute directly the spectral eddy viscosity and diffusivity. The method is
the same as that employed by Domaradzki et al. [70] for a DNS: One defines
a fictitious cutoff wavenumber ki = kc/2 across which the kinetic-energy
transfer 7' and scalar transfer 77 are evaluated. Because we deal with a LES,
the latter corresponds to triadic interactions such that k& < k., p and (or)
q > k¢ and p, g < kc. These are termed T:kléc(k, t) and Tszkc(k, t). They
correspond to resolved transfers and satisfy energetic equalities of the type

TGk, 1) = T (ks 1) = Tk, 1), (4.36)

where 7., and 7., are the total kinetic energy transfers across k¢ and kc. It
is important to note that Eq. (4.36) is the exact energetic equivalent in spectral
space of Germano’s identity if one works in Fourier space with sharp filters.
A similar relation holds for 7, ch <ke_ Dividing these equations by —2k? E(k, t)
and —2k* E,(k, 1) gives the resolved spectral eddy-viscosity and diffusivity.
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Figure 4.5 shows these functions normalized by [ E (k()/ k¢]"/ 2 Similar results
have been found in Lesieur and Rogallo [165]. The figure demonstrates that
the plateau-peak behavior does exist for the eddy viscosity but is questionable
for the eddy diffusivity. This anomaly is obviously related to the anomalous
scalar k~! range previously mentioned. It was stressed by Lesieur ([170],
p- 392) that this anomalous scalar range still exists in a DNS of decaying
isotropic turbulence: In this case, the double filtering yields a plateau-peak
eddy viscosity with a plateau value of approximately zero, as was discovered
by Domaradzki et al. [70]. The eddy diffusivity, in contrast, still behaves as
in the LES. In fact, Métais and Lesieur [205] have checked that the anomaly
disappears when the temperature is no longer passive and is coupled with
the velocity within the framework of the Boussinesq approximation (stable
stratification). It is possible that the same holds for compressible turbulence,
which would legitimize the use of the plateau-peak eddy diffusivity in this
case.

4.7 EDQNM infrared backscatter and self-similarity

We return now to the EDQNM analysis of Lesieur and Ossia [174] and show
that it is only at s = 1 that the kinetic-energy spectrum may have a global
self-similarity at entire scales from the energy-containing to the dissipative
ones. The derivation is borrowed from Lesieur and Schertzer [164], who
applied it to the EDQNM spectral equation. We present a generalization that
does not require use of closure. The first point is to remark that such a global
self-similarity necessarily implies that the integral and dissipative scales / and
Ip are proportional, with their ratio being time independent. If a Karman—
Howarth self-similarity is assumed, the kinetic-energy and transfer spectra
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are, respectively,
E(k,t) = v} F(kl), T(k,t)=v> Ty(kl), (4.37)

where the functions F' and 7} are nondimensional. We assume in fact that a
regime is reached such that all the quantities have an algebraic time depen-
dance, and thus we can write

E(k,t)y=t" G(k"), T(k,t)="""2T1(k) (4.38)

with &' = k™, v? oc ", and I o ™. Notice here that G and 7" are dimen-
sional functions of the dimensional argument k’. Substituting these expres-
sions into the kinetic-energy spectrum evolution equation

IE
PPl WIPE = T(k, 1), (4.39)
we obtain (after division by £3¢=")/2)
4G | Gm-n-22 2 (g~
NG mk'— (O IE L 20k PG = TK). (4.40)

In this equation, all the terms have to be time independent. We do have 3m —
n —2 =0 (a condition that we could have obtained by writing € ~ v?/[)
and m + n = 0, which finally implies thatm = 1/2,n = —1/2, and ax (such
that v? oc £7%F) is equal to m — n = 1. It is a well-known result that such a
global self-similarity, when applied to the infrared spectrum, implies a further
condition. Indeed, relation (4.38) gives for an infrared kinetic-energy spectrum
o t*k* (for which viscosity has a negligible effect if small enough)

Vs =n +ms (4.41)

and s = 1 +2y,. We know that (in the EDQNM framework where a k*
backscatter is assumed), y; is zero except for s = 4, where it is equal to
0.16 (see Lesieur and Schertzer [164] and Lesieur [170]), and the only pos-
sibility is thus s = 1. Hence, the large-scale Reynolds number R; should be
constant with time as well as R, ~ /R;.

The question of permissible values for s is a controversial one. There are
arguments in favor of s = 4 (see the review of Davidson [62]) and others
in favor of s = 2 (Saffman [247]). Taking even values of s is compulsory if
certain regularity conditions are fulfilled for the velocity-correlation tensor
between two points when the distance goes to infinity. Mathematically, we
may take initially odd values of s (such as 1 or 3) and even noninteger ones,
as was proposed by Eyink and Thomson [88]. Working on the basis of an
analogy with Burgers turbulence studied by Gurbatov et al. [116] with DNS,
Eyink and Thomson propose the existence of a crossover dimension s &~ 3.45,
above which a k* backscatter should appear. The crossover value is obtained
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Figure 4.6. EDQNM decaying calculation fors = 1 showing time evolution of the kinetic-energy
spectrum (left) and the spectrum multiplied by k= (right).

in the following way: They assume that kinetic energy decays with time like
t~138% the law obtained by Lesieur and Schertzer [164] for s = 4, and then
equate this decay exponent to the exponent o g, which is equal to

_2s+ 1)
543

an equation obtained assuming Karman—Howarth self-similar decaying spec-
tra with permanence of large eddies.

We now present recent EDQNM decay calculations with an initial expo-
nent s equal, respectively, to 1, 2, 3, and 4. Calculations are run up to 600 initial
turnover times, with k;(0) = 2, §k = 277, and the initial large-scale Reynolds
number Ry, (0) =416,132. Figure 4.6 (left) presents the kinetic-energy
spectrum evolution (thirty-one curves) in the case s = 1. There is a good time
invariance of infrared modes. This is confirmed by the compensated spectrum
multiplied by k~! (Figure 4.6 [right]), which has an invariant plateau at low k.
We can check in this case (Lesieur and Ossia [174]) that kinetic energy decays
like =19 which is in good agreement with the law of Eq. (4.42). Figure 4.7
(top left) shows the Mammoth function M(k,, ¢) for all the spectra of Fig-
ure 4.6 except the initial one. The thirty curves are perfectly superposed, which
justifies for the EDQNM the results of the previous paragraph. The following
calculations will confirm that it is only for this case that self-similarity at low
and high wavenumbers holds. Let us look now at the time evolution of Ry, R;,
and R;. In Figure 4.8, we see the time constancy of the two latter Reynolds
numbers when self-similarity is reached. However, the first displays oscil-
lations. This shows that k; is not strictly proportional to / and that the latter
quantity is better for characterizing the large scales. In fact, this time constancy
of the Reynolds number corresponds to a sort of nondissipative turbulence

of , (4.42)



68 LARGE-EDDY SIMULATIONS OF TURBULENCE

2+ 4 2+ -
=) 1 =) r 1
3 1 o r 1
Il 1 Il r 7
= 15| /\ . = 15 .
- ] N [ ]
Il Il
& & r 1
& 1+ 4 & 1k i
o (@] F -
= s [ ]
= s
= = r b
s [ ] S [ ]
0.5 4 05 |- -
0 (AT R TTTY! BRI MR ETI AR G ol AR RN EI G
107° 10 10°® 100?107 1 10° 10* 10°* 10?% 107" 1
Ke K.
2L ] ]
=) r 1 =) 1
o [ 1 3 1
T osf /\ 1 1 ]
© [ ] « ]
I Il
m gL ] = ]
I =
o k- 4 o 4
= [ ] = ]
s =
< r ] = 1
0.5 | - 4
ol @ . .. .. .0 ool N ] » T R R N G
10° 10* 10° 10% 107t 1 107° 10 10 10?% 107" 1
K. K.
Figure 4.7. EDQNM decaying calculation fors = 1,s = 2, s = 3, and s = 4 showing time evo-
lution of the Mammoth function Mk, t).
let+05 —
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Figure 4.9. EDQNM decaying calculation for s = 2 showing time evolution of the kinetic-energy
spectrum (left) and the spectrum multiplied by k=2 (right).

(because the Reynolds number does not vary with time), which is an ex-
ceptional (and not realistic®) situation. It should be noted also that the ¢!
kinetic-energy decay law was proposed by Batchelor [18] but without stress-
ing the necessary constraint s = 1 upon the infrared modes.

For other values of s larger than one, the Reynolds number will decay with
time, as will be checked. We continue with s = 2, and spectra remain time
invariant at low & (Figure 4.9). The kinetic energy decays at the end of the run
ast~ 1201 [174]. This is very close to Saffman’s 6/5 law [247], which can be re-
covered from Eq. (4.42) with s = 2. We will see later that this law is also very
well verified in large-eddy simulations, which validates the EDQNM model
as a tool for this type of problem. The Mammoth function has now lost self-
similarity atlow k (Figure 4.7). We still have quite a good time invariance at low
k for s = 3, with, however, some weak backscatter. The corresponding curves
are shown in Figures 4.10 and 4.7. The kinetic energy decays as t~!323, which
is slightly above the 4 /3 value obtained by replacing s by 3 in Eq. (4.42). This is
certainly due to departure from self-similarity at low k. Indeed, it was checked
in Lesieur and Ossia [174] that varying the Reynolds number for a given s has
no effect on the decay law. The low-k time invariance is lost for s = 4 with
a sensible k* backscatter, which is a feature particularly obvious on the com-
pensated spectrum of Figure 4.11. Kinetic energy decays like 3%, and the
exponent has saturated. This is not far from Lesieur and Schertzer’s 1.38 law.
Figure 4.12 displays the Reynolds numbers evolution now with a global decay
but maintaining an oscillatory behavior of Ry, .

° We are not dreaming, however, that by some control of the large scales that would modify
the infrared spectrum into a law proportional to &, turbulence might become in some sense
eternal.
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Figure 4.13. EDQNM decaying calculation for s = 3.2 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=325 (right).

We do not present results for s higher than 4, which can be found in Lesieur
and Ossia [174], but concentrate now on the following noninteger values of
s between 3 and 4. Here, the infrared spectrum will be compensated by the
power of k that gives a flat plateau at ¢+ = 600. For s = 3.2 (Figure 4.13) a
weak backscatter appears, which, from the infrared compensated spectrum, is
best described by &32°. The kinetic-energy decay exponent saturates to 1.340,
which is lower than the value 1.355 predicted by Eq. (4.42). For s = 3.3
(Figure 4.14), the backscatter remains weak and is now close to k37, The
kinetic-energy decay exponent saturates to 1.347 instead of the 1.365 pre-
diction of Eq. (4.42). For s = 3.4 (Figure 4.15), backscatter becomes more
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Figure 4.14. EDQNM decaying calculation for s = 3.3 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=337 (right).
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Figure 4.15. EDQNM decaying calculation for s = 3.4 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=3 (right).

important and is best described by &3>. We have iy = 1.347 instead of 11/8 =
1.375 given by Eq. (4.42).

For s = 3.5 (Figure 4.16), backscatter slightly increases and is now de-
scribed by £*°. We have oy = 1.360 instead of the analytical prediction
18/13 ~ 1.385 of Eq. (4.42). We have also plotted on Figure 4.17 this spec-
trum compensated by k=4, It is obvious that we are extremely far from a
plateau. This seems to rule out, in the framework of these EDQNM calcu-
lations, Eyink and Thomson’s [88] prediction concerning the appearance of
such a backscatter slighly above the crossover s = 3.45. The calculation for
s = 3.6 is shown in Figure 4.18. Now backscatter increases, with the expo-
nent being close to 3.7, and remains without any k* component. We have
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=600)
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0.6 =

=3.5
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Figure 4.16. EDQNM decaying calculation for s = 3.5 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=3 (right).
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op = 1.366. For s = 3.7 (Figure 4.19), backscatter is more important, being
close to k8. We have oy = 1.371. For s = 3.8 (Figure 4.20), the backscatter
is close to £3-%%, and we have oz = 1.376. We end with s = 3.9 (Figure 4.21),
which is very close to the s =4 case; now backscatter is ~k>%, and
ap = 1.380. The conclusion of this study is that, up to s = 3, permanence
of large eddies holds, and the kinetic-energy decay is well described by
Eq. (4.42). Backscatter appears gradually between s = 3 and s = 4. It does
not bring a k* component to the spectrum; rather it yields a k&*" spectrum, with
s’ slightly superior to s. Such a backscatter is in fact quite low up to s = 3.4
and is intensified above this value. In this respect, there is some crossover
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Figure 4.18. EDQNM decaying calculation for s = 3.6 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=37 (right).
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Figure 4.19. EDQNM decaying calculation for s = 3.7 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=38 (right).

between 3.4 and 3.5, but it is not as sharp as that proposed by Eyink and
Thomson [88].

4.7.1 Finite-box size effects

Lesieur and Ossia [174] have also considered the case where the spectral
peak is initially close enough to §k, so that confinement effects may further
constrain the evolution of turbulence. In an experiment in liquid helium where
turbulence decayed behind a grid, Stalp et al. [274] showed two stages in
the kinetic-energy evolution: first a t~! law, followed by a =2 law. They
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Figure 4.20. EDQNM decaying calculation for s = 3.8 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=388 (right).
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Figure 4.21. EDQNM decaying calculation for s = 3.9 showing time evolution of the kinetic-
energy spectrum (left) and the spectrum multiplied by k=39 (right).

interpreted the latter as corresponding to the decay of turbulence with a fixed
integral scale. Indeed, let us assume the kinetic-energy spectrum is zero up to
a constant k; and decreases above k; as €*/3k~>/3; then the kinetic energy is
proportional to €2/3. This yields az = 2. In the EDQNM calculation, Lesieur
and Ossia [174] take s = 2, §; = 0.125, and £;(0) = 2. Soon E(k, t) forms
a time-decaying spectrum close to k=3 extending above 8k (Figure 4.22
left). The time evolution of the exponent «x is shown in Figure 4.22 (right).
The exponent increases continuously from an initial value close to 1.2, and
it is only at # ~ 13,000 that or seems to relax toward 2. At this time, the
kinetic-energy spectrum is still close to k=3 with, however, a rise at k;.
The corresponding Reynolds number (based on £;) is of the order of a few
thousand. Developments of this study have been carried out by Touil et al.
[280].
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Figure 4.22. Time evolution in decaying EDQNM bounded turbulence of the kinetic-energy
spectrum up to t = 1, 000 (left) and of —ag up to t = 13,000 (right).
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times) goes from top to bottom curve for the pressure. (From Lesieur et al. [171].)

4.8 Recent LES studies of decaying isotropic turbulence

The spectral-dynamic model was used by Lesieur et al. [171] and Ossia
and Lesieur [226] to study the decay of isotropic three-dimensional turbu-
lence. They looked at kinetic-energy and pressure infrared dynamics. Here,
the kinetic-energy spectrum allowing us to determine the exponent m arising
in the model is calculated by a three-dimensional spatial average in the com-
putational box. The study of pressure spectra is particularly interesting for
acoustic studies because they characterize the noise emitted.

In the results shown in the following, to have the widest infrared range
available, the initial energy spectral peak is close to the cutoff. The num-
ber of collocation points in Fourier space will vary. The nonlinear terms are
dealiased by the so-called %—rule. In the 256° point simulation, for instance,
only 85 active Fourier modes are considered in each direction of Fourier
space, between kpi, = 1 and kpax = 85. The 256° point simulation presented
on Figure 4.23 concerns an initial k* infrared kinetic-energy spectrum with a
Gaussian velocity field. The calculation is run here up to 20 initial large-eddy
turnover times. One sees that the kinetic-energy spectrum immediately picks
up a k* behavior with a positive transfer, which confirms the existence of the
k* backscatter. In fact, when the infrared kinetic-energy spectrum is propor-
tional to k*, the multiplying coefficient is equal to /(z)/24m?, where I(t), the
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Loitzianskii integral, is defined by

I(t) = / r2Usi(r, dF, (4.43)

and U;;(r, t) is the trace of the second-order velocity correlation tensor. This
proves that the latter quantity is not strictly time invariant, although it does
not vary much in the late stages of the computation. We remark that time
invariance of Loitzianskii’s integral, related by Landau and Lifchitz [155] to
angular-momentum conservation of the flow,'? yields a #~!%/7 time-decay law
of the kinetic energy [corresponding to s = 4 in Eq. (4.42)], as was shown
first by Kolmogorov [146]. Such a law may be recovered with a two-slope (4
and —5/3) model for the kinetic-energy spectrum (Comte-Bellot and Corrsin
[50]), or with the assumption of a Karman—Howarth-type self-similar energy
spectrum (Lesieur [170], p. 248), provided backscatter is neglected.

The infrared pressure spectrum of Figure 4.23, in contrast, follows imme-
diately a k* law and decays rapidly (no pressure backscatter). Notice that such
a law may be derived analytically using nonlocal expansions of the quasi-
normal (or EDQNM!") pressure-spectrum equation. The theory predicts for
the pressure spectrum

8 +o00 E2(q)
E,(k)=|— dg| K, 4.44
=35 [ 5P| 4449)
whereas in LES
kC E2 t
Eppk, 1)~ [0.3 / (qz’ )dq} 2. (4.45)
0 q

The latter law, which has been validated with compensated spectra, persists
for a very long time (several hundred initial turnover times; see [226]) and is
in fact independent of the infrared kinetic-energy spectrum behavior. Indeed
LESs starting with an infrared k> kinetic-energy spectrum show the absence
of energy backscatter in this case (see Figure 4.24) with a time-independent
coefficient. The corresponding kinetic-energy decay law is Saffman’s [247]
t~%/5 law. Meanwhile, the pressure still behaves according to the law (4.45). As
was brought to our attention by Hill [124], a k? shape for the infrared pressure
spectrum is implied without any approximation in Batchelor [19]. However,
this result assumes that fourth-order correlations of velocity derivatives de-
crease to zero with sufficient rapidity as the separation goes to infinity. Such
an assumption poses problems when one considers infrared energy spectra of

19 In fact, such a principle does not hold exactly because of viscous-dissipation and boundary-
conditions effects.
! Both theories are equivalent for the pressure, as was shown by Larchevéque [156].
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Figure 4.24. 256° point LES of decay of the kinetic-energy spectrum with E(k, 0) o k? for
k — 0. Time arrow goes from top to bottom. (From Lesieur et al. [171].)

various shapes. No such limitation exists for the closure result. Another great
advantage of the closure here is that it provides an analytic expression for the
pressure coefficient. Ossia and Lesieur [174] have determined in these 256
point LESs the time-decay laws of kinetic energy and pressure variance at very
large times. The decay exponents are determined by a least-squares method
over a time interval [30, 200]. They depend on the initial infrared exponent s
of the kinetic-energy spectrum. Ossia and Lesieur found for s = 4 that oy =
1.40 (a value intermediate between the Kolmogorov prediction 10/7 = 1.43
and Lesieur and Schertzer’s 1.38 EDQNM prediction) and ( p/z) = t7% with
ap = 2.90; for s = 2 they obtain oy = 1.22 and ap = 2.60.

Notice that the values ¢y = 1.40 and ap = 2.89 have been found by Ossia
[227] in a 5123 point computation with s = 4. Notice also that the pressure
variance time-decay law is not too far from that of the squared kinetic en-
ergy (ap = 2ag). Such a law had been found by Batchelor [19] with the
quasi-normal approximation. The exponents found in the two cases for the
kinetic energy do not saturate exactly at large times, as in the LES of Chasnov
[38] using the plateau-peak model. Chasnov concludes that the exponents
should eventually asymptote on the respective values 1.43 and 1.20, which
would cancel the backscatter in the first case. However, these simulations at
very large times might be affected by finite-box effects. These would prevent
the integral scale of turbulence from growing and hence inhibit the spectral
backscatter. The pressure spectrum, however, does not seem to be affected
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Figure 4.25. 256° LES of infrared kinetic-energy spectra in three-dimensional isotropic de-
caying turbulence with E(k, 0) respectively as o k*, k35, k3 for k — 0. The spectra are shown
from ty = 0 (dashed line) to t; = 200 by At = 8. (From Ossia and Lesieur [226].)

by these problems. It is remarkable that, in the infrared pressure problem,
closures of the quasi-normal/EDQNM type not only give good integral scaling
on the kinetic-energy spectrum but also a correct order of magnitude for the
coefficient.!?

To finish with the Ossia and Lesieur [226] spectral-dynamic LES, let us
mention the simulations with 256> collocation points and initial infrared expo-
nents respectively equaltos = 3, s = 3.5,and s = 4 (see Figure 4.25) . There
is a quasi-permanence of big eddies for the case s = 3, as in the EDQNM
prediction, but the decay exponent obtained is different: oz = 1.36 in the
LES instead of 1.323 in the EDQNM. For s = 3.5, there is obviously no k*
backscatter, and thus Eyink and Thomson’s [88] prediction is again not satis-
fied. The LES yields here oy = 1.38, whichis very closetothe 18/13 &~ 1.385
self-similar prediction given by Eq. (4.42) fors = 3.5 (recall that the EDQNM
in this case yields ax = 1.36).

12 Indeed, 8/15 ~ 0.53, which should be compared with 0.3.
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4.8.1 Ultraviolet pressure

A question of interest concerns the pressure behavior in the Kolmogorov k—>/3
cascade. The quasi-normal analysis yields the Oboukhov—Batchelor spectrum
(see in particular Batchelor [19])

E,p(k) ~ e Pi7, (4.46)

which is an expression that can also be obtained dimensionally by assum-
ing that the pressure spectrum E,,(k) is a function of € and k only. Such a
prediction is, however, controversial. Indeed, the LES of isotropic turbulence
of Métais and Lesieur [205] indicates such a law for only a tiny range with,
however, the right numerical value predicted by Monin and Yaglom [212].
In the LES of a temporal mixing layer using the spectral-dynamic model,
Silvestrini et al. [268] found for the three-dimensional kinetic-energy spec-
trum an approximate average inertial exponent of —5/3 for 10 < k§ < 40,
where §(¢) is the vorticity thickness. The pressure spectrum in this range
displays a quite good k=53 law.



5 Spectral LES for inhomogeneous turbulence

We present in this chapter applications of LES using a spectral eddy viscos-
ity to two incompressible shear flows: a temporal mixing layer and a plane
channel.

5.1 Temporal mixing layer

5.1.1 Plateau-peak model

We apply the (nondynamic) plateau-peak model to an incompressible temporal
mixing layer. The flow is periodic in the streamwise and spanwise directions,
and free-slip conditions are assumed on the lateral boundaries. The numerical
code is pseudospectral in the three dimensions of space. There is no molecular
viscosity. Turbulence is initiated by a hyperbolic-tangent velocity profile!

i(y)=U tanh(si, (5.1)
0

where §; = 25y is the initial vorticity thickness. The length of the domain
corresponds to 4, where

Ao = 148y = 765; (5.2)

is Michalke’s [208] inviscid, most-unstable wavelength.

Three-dimensional forcing
A small, three-dimensional, white-noise, random perturbation close to isotropy
is first superposed to this basic profile. Figure 5.1 (top) shows a perspective

! This is a good approximation in the laminar case or for turbulent mean velocity.
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Figure 5.1. Vorticity modulus at
t=145;/U in the LES of a temporal
mixing layer forced initially. (Top) three
dimensionally.  (Bottom)  quasi-two-
dimensionally. (Courtesy G. Silvestrini.)

view of the vorticity modulus at ¢t = 146,/ U. It displays evidence for helical
pairing, where vortex filaments oscillate out of phase in the spanwise direction
and reconnect, yielding a vortex-lattice structure. This was previously found
in the DNS of Comte et al. [S1, 52] with the same initial conditions.
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Quasi-two-dimensional forcing
If the perturbation is quasi-two-dimensional, the mixing layer evolves into
a set of large quasi-two-dimensional Kelvin—Helmholtz (KH) vortices, both
of which undergo pairing and stretch intense longitudinal hairpin vortices
in the stagnation regions between them. Figure 5.1 (bottom) displays the
vorticity-modulus field at ¢t = 144§; /U. The circulation of longitudinal hairpin
vortices is of the order of that of the basic KH vortices These longitudinal
vortices have long been observed experimentally in spatially growing incom-
pressible mixing layers (see, e.g., Bernal and Roshko [23]). They are due to the
stretching of vorticity within the stagnation regions between the large rollers,
following mechanisms reviewed in Lesieur ([170]; see also Corcos and Lin
[55] and Neu [218]). We consider the Euler vorticity equation

D&

Y _ViQad=S®a+

= OXD=S®a. (5.3)

N | —

The deformation tensor S is real and symmetric. It has therefore real eigenval-
ues, and the eigenvectors (principal axes of deformation) form an orthonormal
frame. We suppose that the vorticity in the stagnation region is weak initially
and that the eigenvalues of S, ranked as s; > s3 > s,, will not change during
the evolution. Given that s; + 55 + 53 = 0 because of incompressibility, we
gets; > 0,5, < 0. We assume also that the eigenvectors are time independent.
Working in the orthonormal frame they form, we have

le Da)2 Da)3

F = S1w1, E = Sy, F = S3w3.
Vorticity will be stretched in the direction of the first principal axis and com-
pressed in the direction of the second. In fact the flow in this stagnation region
is not far from a plane pure deformation, and thus 53 ~ 0 (spanwise direction)
and the first axis of deformation is offset by 45° with respect to the direction
of the mean flow. This justifies the assumption of time independence for the
eigenvectors.

It is remarkable that the present LESs, done at a quite low resolution (using
pseudo-spectral methods and 96° Fourier modes), are able to capture the lon-
gitudinal vortices, which are at quite small scales. The DNS studies of Comte
et al. [52] at a comparable resolution were unable to find organized, intense
longitudinal vortices in the quasi-two-dimensional forcing case because their
molecular Reynolds number (U§; /v = 100 initially) was too low. It is only
at a much higher resolution that DNS can capture these vortices (Rogers and
Moser [245]). This is an example where LESs provide an excellent tool for
capturing not only large but also small-scale vortices. We will return to other
aspects of temporal or spatial mixing layers throughout the rest of the book.
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5.1.2 Spectral-dynamic model

The same simulations as just described have been carried out by Silvestrini
et al. [268] using the spectral-dynamic model. The spectral exponent m of
the model is here computed with the aid of the three-dimensional kinetic-
energy spectrum calculated through a volume average in the domain, and m
is determined using a least-squares method applied in the range [k¢/2, kc].

Three-dimensional forcing

For the three-dimensional initial forcing, m decreases from a value of 9 to
about 2 at t &~ 20§;/ U, the value at which it saturates. Helical pairing is
recovered att = 146; /U as for the plateau-peak-based LES already presented.
At the end of the simulation (¢ = 608;/U), the mixing layer is highly three-
dimensional. Statistics for mean and rms velocity profiles as well as Reynolds
stresses normalized by U and the vorticity thickness §(¢) are in very good
agreement with experiments on unforced, spatially growing mixing layers
by Bell and Mehta [21]. In fact, Bell and Mehta [21] obtained a self-similar
regime at a distance of about 2505; from the splitter plate. Because the vortices
in the spatial case travel at a velocity (U; 4+ U,)/2, events labeled by some
time N§;/U in the temporal problem will in the spatial case correspond to
a distance N[(U; + U,)/(U; — U,)]é;. Bell and Mehta [21] have a velocity
ratio (U; — U,)/(U; + U,) of 0.25. Then the time of 606; /U in the temporal
problem corresponds to a downstream distance of 2408; in Bell and Mehta’s
[21] experiment, which is not far from the value of 250 they propose.

The kinetic-energy spectra (normalized by U? and k8) of the tempo-
ral mixing layer collapse well in the small scales between ¢ = 505;/U and
t = 608,/ U with an acceptable Kolmogorov k>3 spectrum on about half
a decade above k8 = 10. This differs from the experiment, where the k=5/3
in which spectra cover a wider range and should be attributed to a defect of
the spectral-dynamic model already noticed by Ossia and Lesieur [226] for
isotropic turbulence.

As stressed in Chapter 4, the pressure spectrum of the temporal mixing
layer follows a k—>/3 law in the same range as the energy spectrum.

Quasi-two-dimensional forcing
For the temporal mixing layer with a quasi-two-dimensional initial forcing,
m has the same behavior as in the three-dimensional forcing case.

One observes rollup of quasi-two-dimensional KH vorticesat? = 105;/U.
The first pairing starts at ¢ = 146; /U with the merging of central vortices in
the computational box and is finished with the merging of the two exterior
vortices at ¢+ = 308; /U. Intense, thin longitudinal vortices are also stretched
longitudinally. At ¢ = 456;/U the central KH vortex begins to oscillate in
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Figure 5.2. Schematic view of a plane channel.

2h

the spanwise direction, which triggers the second pairing. At the end of the
simulation (¢ = 85§;/U), there is one large spanwise KH vortex stretching
another large longitudinal vortex. However, compared with the statistical data
of Bell and Mehta [21], it is clear that the simulation has yet to reach self-
similarity.

5.2 Incompressible plane channel

We now show how the spectral-dynamic model may be applied to an incom-
pressible turbulent Poiseuille flow between two infinite parallel flat plates.
A schematic view of the channel is presented in Figure 5.2. A rotation axis
oriented in the spanwise direction is indicated for further applications, but
rotation is inactive right now. The channel has a width 2/, and we define
the macroscopic Reynolds number by Re = 2hU,, /v, where Uy, is the bulk
velocity (integral of the mean velocity across the channel divided by 2/). We
assume periodicity in the streamwise and spanwise directions.

5.2.1 Wall units

Letus recall the so-called wall units, for these are very useful when turbulence
has developed. The friction velocity v.., defined by setting the mean stress at
the wall equal to pv?, satisfies

vi = [a’(u)] . (5.4)
y=0

dy

The velocities will be normalized by v, and denoted ul+ = u;/v,. We also
define a viscous thickness

ly = —, (5.5)

which is characteristic of motions very close to the wall that are dominated
by viscosity,? so that the spatial scales will be normalized by /, and denoted
* =x;/l,. Note that ~* = v, /v defines a microscopic Reynolds number

i =

X

2 At a Reynolds number high enough, this scale is comparable to the Kolmogorov dissipative
scale previously introduced.
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based on the friction velocity. Let y be the distance perpendicular to the
wall. We have seen above that substituting Taylor-series expansions of the
velocity components in powers of y* close to the wall leads to the well-
known result that ™+ and w scale like y*, whereas v™ scales like y.2 The
mean longitudinal velocity profile also scales like y* —a behavior that persists
up to about y* = 4-5, which characterizes the width of the viscous region.
DNS and LES show that this region is certainly not laminar but is strongly
marked by a system of high- and low-longitudinal velocity streaks, which we
are going to discuss.

5.2.2 Streaks and hairpins

Since the experimental observations of Kline et al. [144] of a turbulent bound-
ary layer without a pressure gradient above a flat plate, it has been well
established that coherent structures in the form of streaks of high- and low-
longitudinal velocity fluctuations exist up to about 50 wall units from the
wall. Their average length is of the order of 500 wall units, but low-speed
streaks are longer than high-speed ones. In fact, velocity streaks had been
observed by Klebanoff et al. [143] in a celebrated paper related to transi-
tion in a boundary layer forced upstream by a vibrating ribbon. Klebanoff
associated the streaks (which he could detect with probes) with a system of
longitudinal hairpins traveling downstream and pumping between their legs
lower fluid slowed by the wall. This model explains the formation of low-
speed streaks in the “peaks” of the hairpins and high-speed streaks in the
“valleys.” The system of streaks in a turbulent channel was recovered numer-
ically in a LES of Moin and Kim [210] using Smagorinsky’s model with wall
laws.

5.2.3 Spectral DNS and LES

We will present turbulent channel DNS and LES taken from the work of
Lamballais [151] and Lamballais et al. [153]. Calculations are carried out
at constant Uy, which replaces the forcing provided by the mean longitudi-
nal pressure gradient. They are initiated by a parabolic laminar profile per-
turbed by a small, three-dimensional random noise and are pursued up to
complete statistical stationarity. The numerical code used combines pseudo-
spectral methods in the streamwise and spanwise directions and compact
finite-difference schemes of sixth order in the transverse direction. The subgrid
model is the spectral-dynamic eddy viscosity computed via two-dimensional
kinetic-energy spectra calculated at each time step by spatial averages in planes
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parallel to the wall.? Therefore, the exponent m in the eddy viscosity depends
on y and ¢. This spectral eddy viscosity is implemented spectrally in the direc-
tions parallel to the wall and in physical space in the transverse direction. This
is a very precise code of accuracy comparable to a spectral method at equiva-
lent resolution, as shown by the comparison of DNS at 2™ = 162 with spectral
DNS of Kuroda [149] at AT = 150 (see Lesieur [170], p. 118). We reproduce
this picture in Figure 5.3. We see in Figure 5.3(a) that the logarithmic range
starts at y* = 30. Figure 5.3(b) presents the rms velocity profiles as a function
of y*. It confirms the strong u’ production close to the wall with a peak at
yT = 12, which is obviously the signature of the high- and low-speed streaks
discussed before. Figure 5.3(e) (Reynolds stresses) and 5.3(d) (rms pressure
fluctuations) have a higher peak (y* ~ 30). It might correspond to the tip of
hairpin vortices traveling above the low-speed streaks, as proposed by Lesieur
[170], whose evidence will be presented in animations later on in the book.
Figure 5.3(f) corresponds to rms vorticity fluctuations and is interpreted in
Lesieur ([170], p. 117), who writes (footnotes added), “[ The figure] shows the
r.m.s. vorticity fluctuations (a quantity very difficult to measure precisely ex-
perimentally?). It indicates that the maximum vorticity produced is spanwise
and at the wall.’> The vorticity perpendicular to the wall is about 40% higher
than the longitudinal vorticity in the region 5 < y* < 30, which shows only a
weak longitudinal vorticity stretching by the ambient shear.” We next present
two LESs using the spectral-dynamic model at Re = 6,666 (h* = 204, case
A) and Re = 14,000 (h* = 389, case B). They are, respectively, subcritical
and supercritical with reference to the linear-stability analysis of the Poiseuille
profile. In the two simulations the grid is refined close to the wall to simulate
accurately the viscous sublayer. Figure 5.4 shows for case A the time-averaged
exponent m arising in the energy spectrum at the cutoff as a function of the
distance to the wall y*. Regions where m > 3 correspond to a zero eddy vis-
cosity and hence a direct numerical simulation. This is the case in particular
close to the wall, up to y* ~ 12 where we know that longitudinal velocity
fluctuations are very intense, owing to the low- and high-speed streaks. There-
fore, and because the first point is very close to the wall (y© = 1), such LESs
have the interesting property of becoming a DNS in the vicinity of the wall,
enabling us to capture events that occur in this region. Figure 5.5 shows (in
semilogarithmic coordinates) the mean velocity profile in case A compared

3 It was determined by Lamballais [151] that the replacement of such a spectrum by a fictitious
three-dimensional spectrum using isotropy relations (when spectra decrease as a power law)
did not change the results significantly.

* This is rapidly changing with the impressive development of digital particle image velocime-
try techniques.

5 It corresponds in fact to a steepening of du/dy at the wall under the high-speed streaks
resulting from a kind of squashing of the boundary layer on the wall as the fluid descends.
It is in these regions that viscous friction is produced.
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Figure 5.3. Statistical data obtained in DNS of a turbulent channel flow by Lamballais (straight
line) and Kuroda (symbols): (@) mean velocity, (b) rms velocity fluctuations (respectively, from top
to bottom, longitudinal, spanwise, and vertical), (c) kinetic energy, (d) rms pressure fluctuation,
(e) Reynolds stresses, and (f) rms vorticity (from top to bottom, spanwise, vertical, and longitu-
dinal). (From Lesieur [170]; courtesy Kluwer.)
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Figure 5.4. Spectral-dynamic LES of the channel flow (case A) showing time-averaged expo-
nent m(y™) of the kinetic-energy spectrum at the cutoff.
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Figure 5.6. Spectral-dynamic LES. Same as Figure 5.5 with the rms velocity and vorticity
fluctuations.

with the LES of Piomelli [236] using the dynamic model of Germano and co-
workers [108, 109]. The latter is known to agree very well with experiments
at these low Reynolds numbers. The simulation using the spectral-dynamic
model (bottom part of the figure) coincides with Piomelli’s, yielding a correct
value of the additive constant 5.5 in the logarithmic velocity profile. However,
the LES using the classical spectral-cusp model with m = 5/3 (top of figure)
gives an error of 100% for this constant. The dashed parabola corresponds to
the linear profile at the wall, which is exact up to 4 wall units. Figure 5.6 shows
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Figure 5.7. Turbulent channel flow comparisons of the spectral-dynamic model (solid lines,
h* = 389) with the DNS of Antonia et al. ([7]; symbols, h™ = 395). (Top) mean velocity; (bottom)
rms velocity components.

for case A the mean velocity (same as in preceding figure) and rms velocity
fluctuations compared with the dynamic-model predictions of Piomelli [236].
The agreement of rms velocities is still very good, with a correct prediction
of the peak in longitudinal velocity fluctuations. For the supercritical case, the
LESs of case B are in very good agreement with a DNS at A" = 395 carried
out by Antonia et al. [7] both for the mean velocity and the rms velocity
components. They are shown in Figure 5.7. Notice that in this case the LES
allows us to reduce the computational cost by a factor of the order of 100.
Notice also that the extent of the linear-velocity profile range close to the wall
has slightly increased (from 4 to 5) with the Reynolds number. We present
finally in Figure 5.8 a map of the vorticity modulus at the same threshold for
cases A and B. The flow goes from left to right. It is clear that the LES does
reproduce features expected from turbulence at higher Reynolds number and
displays much more vortical activity in the small scales than the DNS.

5.2.4 Channel pdfs

We turn back to the DNS of the channel at A" = 162 (Figure 5.3), for which we
present various probability density functions (pdfs) of pressure and velocity

1
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Figure 5.8. Turbulent plane channel
vorticity modulus. (Top) DNS (h+ = 165);
(bottom) LES using the spectral-dynamic
model (hT =389). (From Lamballais
[151].)

taken from Lamballais et al. [153]. They are obtained by temporal averaging
as well as averaging in planes parallel to the wall. Consideration of both
sides of the channel allows us to double the number of statistical samples.
We have already seen that, in a turbulent flow, coherent vortices are generally
characterized by a high vorticity modulus and a low pressure. Métais and
Lesieur [205] showed that the pressure pdf was skewed in isotropic turbulence
with a quasi-exponential tail in the lows and a Gaussian one in the highs. In
contrast, the pdf of any vorticity component is symmetric with exponential-
like tails. Analogous results were found in DNS of a mixing layer by Comte
et al. [52] and, for the pressure, in experiments of turbulence between two
counterrotating disks [91]. In all these cases, the coherent vortices are clearly
identified, and one generally relates the skewed pressure pdfto the existence of
vortices.® It is thus of interest to carry out the same study in a plane turbulent
channel to see how the various pdfs of pressure and velocity react to the
existence of streaks and ejected hairpins. All the pdfs presented here concern
the fluctuations with respect to the mean, and the argument is normalized
by the rms value. They are plotted in semilog coordinates, and the dashed
parabola indicates a Gaussian distribution of variance 1.

Figure 5.9 shows the pdfs of pressure at the wall very close to it in the
viscous region (y* = 2.5), where the streaks are maximum (y* = 12), and

¢ Indeed, the pressure signal will exhibit a strong undershoot within the vortex, inducing high
probabilities for low-pressure values. However, as we have seen in Chapter 2, a Gaussian
velocity field may contain large weak vortices, implying an asymmetric pressure pdf.
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Figure 5.9. Channel pressure fluctuation pdfs at different distances from the wall. (Courtesy
Phys. Rev. E. and E. Lamballais.)

in the core of the flow close to the channel center (y™ = 162). Figures 5.10,
5.11, and 5.12 present, respectively, the longitudinal (u"), transverse (v'), and
spanwise (w’) velocity fluctuations at y* = 2.5, 12, and 162. The pressure
pdf at the wall (y* = 0) is totally symmetric, with exponential wings. There
is no trace of any kind of vortical organization. Such a pressure pdf had
already been determined in analogous simulations by Kim et al. [142] but
with a smaller number of statistical samples. At y™ = 2.5, the pressure is
very close to the distribution at the wall, and it is still difficult to see any trace
of vortices. The longitudinal velocity is highly intermittent at high speeds
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Figure 5.10. Channel longitudinal velocity pdf at different distances from the wall. (Courtesy
Phys. Rev. E. and E. Lamballais.)

and “sub-Gaussian” at low speeds. Thus, high-speed streaks are much more
intense and intermittent than the low-speed ones close to the wall. Such a
distribution for #’ at the wall is responsible for the positive skewness of u’
measured in the experiments of Comte-Bellot [49] and recovered in the DNS
of Kim et al. [142]. The skewness of u’ is here defined as

fj;o u®P(u)du’
()32 ’

(5.6)

where P(u') is the pdf of u’. Another consequence of these abrupt excursions
of positive longitudinal velocity in the high-speed streaks close to the wall is
the creation of intense excursions of spanwise vorticity (and hence of drag)
at the wall just underneath, which have the same sign as the basic vorticity.
This point was noticed by Ducros et al. [81] in LES of a weakly compressible
boundary layer spatially developing above a flat plate, which will commented
on later in the book. Still, at y* = 2.5, the pdf of v’ is very intermittent
with faster descents than ascents. This is in agreement with the fact that the
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Figure 5.11. Channel vertical velocity pdf at different distances from the wall. (Courtesy Phys.
Rev. E. and E. Lamballais.)

flow upwells in the low-speed regions and sinks in the high-speed regions.
The spanwise velocity w’ is extremely intermittent. It should be symmetric
because of the mirror symmetry of turbulence with respect to planes parallel
to (x, y). In fact, such a symmetry does not hold exactly owing to a lack of
spanwise extent of the domain. In the core of the streaks (y™ = 12), u’ has no
intermittency at all, since both sides of the pdf are sub-Gaussian. The vertical
velocity v is weakly asymmetric, with a preference still favoring descents
over ascents. The spanwise velocity w’ is not very intermittent. The pressure
becomes asymmetric with more intermittency in the troughs than in the peaks,
which are still exponential.

In the central region of the channel (y* = 162), the pressure pdf resembles
skewed distributions encountered in isotropic turbulence or free-shear flows.
Visualizations and animations of the vorticity and Q fields do show in fact that
large, asymmetric, hairpin-shaped, quasi-longitudinal vortices are still carried
by the flow, and their existence certainly explains the pressure distribution. The
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Figure 5.12. Channel spanwise velocity pdf at different distances from the wall. (Courtesy
Phys. Rev. E. and E. Lamballais.)

other components v" and w’ look like isotropic turbulence. The longitudinal
velocity u’ is now preferably negative, with excursions of low speeds. It seems
then that the intermittent sweeps of high speed at the wall are balanced by
low speeds in the channel center, which is quite natural if one thinks in terms
of continuity. This coherent-vortex topology will be further discussed later
in the case of weakly compressible channels and spatially growing boundary
layers.



6 Current challenges for LES

We have clearly shown in the former chapters the advantages of the spectral
eddy-viscosity models with, in particular, the possibility of accounting for lo-
cal or semilocal effects in the neighborhood of the cutoff. More details on this
point may be found in Sagaut [248], which contains many advanced aspects on
LES modeling. However, in most industrial or environmental applications, the
complexity of the computational domain prohibits the use of spectral methods.
One thus has to deal with numerical codes written in physical space and em-
ploying finite-volume or finite-differences methods often with unstructured
grids. This last point will not be considered in this book, although it is crucial
for practical applications. We will present, however, simulations on orthog-
onal grids of mesh size varying in direction and location! and sometimes in
curvilinear geometry. This chapter will mainly be devoted to models of the
structure-function family with applications to isotropic turbulence, free-shear
and separated flows, and boundary layers. We will also present in less detail
alternative models such as the dynamic structure-function model, hypervis-
cosity model, mixed structure-function/hyperviscous model, and the mixed
model.

6.1 Structure-function model

6.1.1 Formalism

The structure-function (SF) model is an attempt to go beyond the Smagorin-
sky model while keeping in physical space the same scalings as in spectral
eddy-viscosity models. The original SF model is due to Métais and Lesieur
[205]. It consists in building in physical space an eddy viscosity normal-

ized by / Ez(kc)/ kc) with kc = w/Ax. The spectrum Ex(kc,t) is a local

! This was the case in particular for the channel presented earlier.
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kinetic-energy spectrum at a given point X, which has to be properly deter-
mined by assuming that turbulence is locally isotropic. This allows us to take
into account the spatial intermittency of turbulence. We first discard the peak
behavior? of K (x) in Eq. (4.24) and then adjust the constant, as proposed by
Leslie and Quarini [177], by balancing, in a k=3 inertial range extending
from zero to k¢, the subgrid-scale flux 2 fokc wk?E(k)dk with the kinetic
energy flux €. This yields

1/2
@} . (6.1)

2

We keep in mind that £ (kc) is now a local kinetic-energy spectrum that has
to be evaluated in terms of physical-space quantities. The best candidate for
that is the second-order velocity structure function

F5r) = ([, 1) —i(x +7, )], (6.2)

where the label “is” stands for isotropic turbulence, and the brackets corre-
spond to ensemble averaging. Indeed, we have already pointed out the equiva-
lence between Kolmogorov’s €/3k=>/3 spectrum and the (Sv(r)?) ~ (e r)*/?
structure function derived from Eq. (1.42). We also recall Batchelor’s relation
in isotropic turbulence

FS(Ax) = 4 /0 h E(k, 1) (1 — %) dk. (6.3)

For the subgrid-modeling problem, we consider the following local structure
function:

F(F, Ax) = <[§(§, £ — (@ + 7, t)]z)w . (6.4)

rll=Ax

The difference between (6.4) and relation (6.2) is that F; is calculated with
a local statistical average of square (filtered) velocity differences between ¥
and the six closest points surrounding X on the computational grid. In some
cases, the average may be taken over four points parallel to a given plane.?
The equivalent Batchelor’s formula is

kc .
By, Ax) = 4/0 Ek, 1) (1 _ %) dk (6.5)

because the filtered field has no energy at modes larger than kc. Assuming
again a k—>/3 spectrum extending from zero to k¢, we obtain

VS, Ax, 1) = 0.105 C % Ax [Fa(F, Ax)]V2. (6.6)

2 Later we will show how to reintroduce the peak in terms of hyperviscosity.
3 In a channel, for instance, the plane is parallel to the boundaries.
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In fact, this derivation of the SF model equation is different from, and simpler
than, the one proposed in the original paper of Métais and Lesieur [205] and
may be found in Ducros [79].

6.1.2 Nonuniform grids

As emphasized in Lesieur ([170], p. 398), interpolations of Eq. (6.6) based
on Kolmogorov’s 2/3 law for the aforementioned structure function may be
proposed if the computational grid is not regular (but still orthogonal). Let
Ac be a mean mesh in the three spatial directions.* We have (in the six-point
formulation)

1 3 0 Ac 2/3
B(E Ac) = > F (E) (6.7)
i=1 !

with
F = [id(%) — (% + Ax; &) + [0(F) — i — Ax; &), (6.8)

where ¢; is the unit vector in the ¥; direction.

6.1.3 Structure-function versus Smagorinsky models

We have found a relation between Smagorinsky’s model and the structure-
function model by replacing the velocity increments in the latter by first-order
spatial derivatives. For the six-point formulation we get

v & 0.777 (Cs Ax)*\/25,; S + @iy, (6.9)

where @ is the vorticity of the filtered field and Cs is Smagorinsky’s constant
defined by Eq. (3.32) in terms of Kolmogorov’s constant Cx. Then the SF
model appears, within this crude first-order approximation, to be a combi-
nation of the Smagorinsky model in a strain and vortical version. Suppose
as an example that we are in the stagnation regions between two quasi-two-
dimensional vortices (e.g., in a mixing layer, a wake, or a round jet) when
there is a low residual vorticity that is going to be stretched longitudinally.
At this initial stage, and because vorticity in the stagnation region is low, the
vortical term will be small compared with the strain term; thus, the SF model
will be about 20% less dissipative than Smagorinsky’s, which will favor the
eventual stretching of longitudinal vortices.

Equation (6.9) does not clearly specify what happens for the two models
within the vortices themselves. In fact, it can be reformulated by introducing

* It may be determined by a geometric mean, or of another type.
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the O quantity associated with resolved stresses to yield

vSF & 1.01 (CsAx)?\/25;,8;; + 20. (6.10)

Because we have seen in Chapter 2 that coherent vortices are well characterized
by positive value of O, the eddy viscosity given by Eq. (6.10) will be slightly
greater than Smagorinsky’s within the vortices. In “elliptic” regions between
vortices, in contrast, where Q is negative, the structure-function eddy viscosity
is smaller than Smagorinsky’s, as previously noted.

6.1.4 Isotropic turbulence and free-shear flows

It has been shown in Métais and Lesieur ([205]; see also Lesieur [170], p. 398)
that, for Cx = 1.40, the SF model gives a quite good k—>/3 energy spectrum,’
whereas the Smagorinsky model® exhibits more of a k=2 inertial range. These
results confirm that the SF model performs better than Smagorinsky’s model
if nothing is done to reduce the natural (i.e., in developed turbulence) value of
its constant. The SF model has also been applied to a spatially growing wake
by Gonze [113] at zero molecular viscosity. The wake is initiated upstream
by a constant velocity plus a deficit-velocity profile close to a top hat with a
three-dimensionally isotropic, random perturbation regenerated at each time
step. The numerical code used is the mixed spectral-compact code already
presented for the channel computations.” A map of the vorticity modulus is
presented in Figure 6.1. One clearly sees the shedding of alternate Karman
vortices, which stretch intense longitudinal vortices in the stagnation regions
between two opposite-sign vortices. In spatial mixing-layer LES using the
same code with analogous upstream, random, three-dimensional perturbations
of the same amplitude (see section 6.5), one sees the development of helical
pairing between the large vortices. Nothing similar appears in our wake.

Let us mention the use of an eddy viscosity proportional to / E(kc)/ kc,
and hence not far from the SF model, by Sankaran and Menon [255] for LES
of spray combustion in swirling jets. They were able to model kinematically
and thermodynamically individual droplets of a dispersed spray in a gas-
turbine combustor model. These researchers have provided impressive online
animations of the jets and were able to study the effect of increased swirl,
which enhances fuel-air mixing and favors combustion efficiency.

6.1.5 SF model, transition, and wall flows

It was at first quite a disappointment to realize that the SF model is, like
Smagorinsky’s, too dissipative for transition in a boundary layer forced

3> The model has a nearly flat compensated k°/3 E (k) spectrum.
6 Cy is still given by Eq. (3.32).
7 It is here the streamwise direction that is computed by finite differences of sixth order.
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Figure 6.1. LES (using the SF model) of a spatially growing wake initiated upstream by a deficit
profile close to a top-hat shape and perturbed by three-dimensional white noise. (Courtesy M.A.
Gonze.)

upstream by a weak, three-dimensional, white-noise perturbation, for which
it also yields relaminarization. Nor does it work very well in a channel. One
might have thought that at least the four-point formulation in planes parallel
to the wall would have eliminated the effect of the mean shear at the wall
on the eddy viscosity. In fact, it turns out that the isotropic relation given by
Eq. (6.5) introduces spurious inhomogeneous effects owing to large scales in
the eddy viscosity, which increase the latter, and the SF model is too dissipa-
tive for quasi-two-dimensional or transitional situations. This is of course a
real concern, especially for turbulent boundary layers or channel flows, and
has motivated the development of two improved versions of the SF model: the
selective structure-function model (SSF) and the filtered structure-function
model (FSF), in which turbulence removes large-scale inhomogeneities be-
fore the SF model is applied.

6.2 Selective structure-function model

6.2.1 Formalism

In the SSF model of David [61], the eddy viscosity is switched off when
the flow is not three-dimensional enough. We need therefore a criterion of
three-dimensionalization, defined as follows: we consider at a given time the
angle between the vorticity vector at a given grid point and the arithmetic
mean of vorticity vectors at the six closest neighboring points (or the four
closest points in the four-point formulation). If we carry out LES of isotropic
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turbulence at a resolution of 323643, we find that the pdf peaks at an angle
of 20°, which is thus the most probable value. Then, the eddy viscosity will
be canceled at points where this angle is smaller than 20°. Compared with
the original SF model, the SSF model dissipates the supergrid-scale energy
at fewer points of the computational domain, and the model constant of 0.105
[see Eq. (6.6)] then has to be increased. David [61] chose to impose the same
spatially averaged eddy viscosities for both the SF model and the SSF model;
thus he obtained with the aid of isotropic test fields

VPR, Ax, 1) = 0.172 Oy (3, 1) C* Ax [Fa(E, Ax)]Y2, (6.11)

where ®,0:(X, ) is a step function equal to zero at points of space at which
the vorticity angle is smaller than 20° and equal to one if it is higher. We will
give several applications of this model throughout the book. It allows good
results to be obtained for various incompressible and compressible turbulent
flows (see, for instance, Lesieur and Métais [168] for a review).

6.2.2 The problem of constant adjustment

However, and as noted by Ackerman and Métais [4], the SSF model presents
some weaknesses that may render it difficult to adapt to very irregular meshes
or to unstructured meshes. First, it seems obvious that the critical angle has
to depend on the local numerical resolution. Indeed, for an infinitely refined
resolution with a local grid size tending to zero, the angle tends to zero. Second,
it is well known that the global kinetic-energy exchange between the supergrid
and the subgrid scales for any eddy-viscosity model is given by 2(v.S; ; S; i)
where the operator ( ) is here a spatial average on the domain. If the cutoff
wavenumber k¢ is assumed to be located in a Kolmogorov cascade, the loss of
energy by the supergrid scales is very close to the energy that cascades through
the inertial subrange and is eventually dissipated by molecular viscosity in the
dissipative range. So, from an energetic viewpoint, it would be more satisfying
if the SSF model ensured the following relation:

2005 8;;81) = 2(wF 8 8,). (6.12)

This leads to a modification of the constant arising in the SSF model, yielding
improvements for the decay of isotropic turbulence. However, the classical
SSF model still gives better results for wall flows.

6.3 Filtered structure-function model

The FSF model, developed by Ducros ([79]; see also Ducros et al. [81])
is described in Lesieur ([170], p. 399). The filtered field #; is now submit-
ted to a high-pass-filter (.) consisting of a Laplacian operator discretized by
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second-order, centered, finite differences and iterated three times. We first
apply relation (6.5) to the high-pass-filtered field

ke ~
ByE, Ax) = 4/0 E(k) (1 — %) dk, (6.13)

where Fy(X, Ax) is the second-order structure function of the high-pass-
filtered field i;, and E (k) is its spectrum. This allows us (for isotropic turbu-
lence) to relate £ to E (kc) and hence to E (kc) thanks to the transfer function
of the “tilde” operator determined with the aid of isotropic test fields. Using
Eq. (6.1) yields for the eddy viscosity

VISF(E, Ax) = 0.0014 C7% Ax [Fy(E, Ax)]'/2. (6.14)

A further advantage of the FSF model is that it does not contain adjustable
constants. We will show in the following sections very satisfactory applica-
tions of this model to mixing layers and to a boundary layer on a flat plate.

6.4 Temporal mixing layer

We present in Figure 6.2 a comparison between Smagorinsky’s model, the
plain (nondynamic) spectral plateau-peak model, and the various structure-
function models (original, selective, and filtered versions). The comparison
is carried out in the case of a temporally growing mixing layer in a uniform-
density flow. As in the simulation of Figure 5.1, we use pseudospectral meth-
ods. For the wake, the molecular viscosity is zero, and we are in the realm
of Euler equation LES. We take a three-dimensional initial isotropic pertur-
bation, but the domain now contains only two fundamental, longitudinal,
most-unstable wavelengths; thus, no helical pairing develops. Instead, we
see two big rollers oscillating in phase® along with stretching longitudinal
haipins, exactly as in the model of Bernal and Roshko [23], with very neat
alternate longitudinal vortices. Notice the strong resemblance among the re-
sults obtained with the plateau-peak, FSF, and SSF models. All give big-
ger spanwise and longitudinal vortices than the Smagorinsky and SF models
and exhibit considerably more small-scale variability. This confirms that both
modifications of the original SF model proceed in the right direction be-
cause the primary and secondary instabilities are less damped with the new
models. Note also that the SF model does not differ here very much from
Smagorinsky’s.

8 Such a configuration corresponds to “translative instability” from the work of Pierrehumbert
and Widnall [235] on secondary instabilities (Floquet-type analysis) of Stuart vortices.
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'S \/’,"A

SMAG: max |w,| =2.92 w; SF: max |w,| = 2.86 w;

SPEC: max |w,| =4.75 w; FSF: max |w,| =4.83 w;

SSF: max |w,| = 5.42 w;

Figure 6.2. Comparison of various subgrid-scale models (Smagorinsky, SF, plateau-peak, FSF,
SSF) applied to a temporal mixing layer visualized by isosurfaces wy = wj (black), wx = —awj (light
gray), and w; = w; = —2U/§; (dark gray).

6.5 Spatial mixing layer

The temporal approximation is only a crude approximation of a spatially
developing mixing layer, where one works in a frame traveling with the av-
erage velocity between the two layers. We consider now an incompressible
mixing layer that is spatially developing between two streams of velocity U
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Table 6.1. Table of the simulations presented here. L, L, and L, denote the
domain’s dimensions in the streamwise, transverse, and spanwise directions,
respectively. The corresponding numbers of collocation points Ny, N,, and N, are
such that the meshes are cubic of side A ~ 0.29 §;.

Run E2D €3p Re LX/6,~, Ly/(si, Lz/(si Nx9Ny’Nz
DNSQ2D 1073 10~ 100 140, 28, 14 480, 96, 48
FSFQ2D 10~* 103 00 112,28, 14 384, 96, 48
FSFQ2DW 104 1073 00 112,28, 28 384, 96, 96
FSF3DW 0 1074 00 112,28, 28 384, 96, 96

and U, (U; > U,). Further details can be found in Silvestrini [267]. The inflow
is given by

i U+U, U —-U, 2y

u(y) = 7 + > tanh 3 (6.15)
The Reynolds number here is built on §;, and half the velocity difference
U = (U, — U,)/2. Characteristics of various runs are described in Table 6.1.
We first compare a DNS at low Reynolds number (Re = 100) with a LES
(without molecular viscosity) using the FSF model. Two small-amplitude
random perturbations of Gaussian pdf are superimposed on this profile. The
first is three-dimensional (i.e., a function of y, z, and ¢); its kinetic energy
is denoted e3pU?. The second (of energy s,pU?) depends only on y and ¢.
The ratio e;p/e3p is set to 10, corresponding to quasi-two-dimensional per-
turbations. The DNS and the LES are henceforth referred to as DNSQ2D
and FSFQ2D, respectively. It is important to notice that the low-Reynolds-
number DNS requires more grid points than the LES, which will turn out
to be much more turbulent. These simulations correspond to domains that
are rather narrow in the spanwise direction. This is why the LESs have been
redone by doubling the spanwise extent. These runs are either forced quasi-
two-dimensionally (FSFQ2DW) or three-dimensionally (FSF3DW). The same
mixed spectral-compact code already discussed for the channel and the wake
is used here. Periodicity is assumed in the spanwise direction z. Sine and

cosine expansions are used in the transverse direction y, enforcing free-slip
boundary conditions. Nonreflective outflow boundary conditions are approx-
imated by a multidimensional extension of Orlansky’s discretization scheme
with limiters on the phase velocity (see Gonze [113] for a detailed description
of the numerical code).

Narrow domain

Figure 6.3 (top) shows an isosurface of the vorticity modulus. The vortex
sheet undergoes oscillations leading to a first rollup further downstream. Sub-
sequently, various pairings of KH vortices are observed. Again, thin, intense,
longitudinal vortices are stretched as in Bernal and Roshko’s [23] experi-
ment. In run DNSQ2D, the vorticity magnitude during the run peaks at 2w;,
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Figure 6.3. Perspective views of isovorticity surface. (Top) run DNSQ2D, ||@| = w;i/3; (bottom)
run FSFQ2D, |lo| = (2/3)w; .

where w; = 2U/§; is the maximal vorticity magnitude introduced at the inlet.
Run FSFQ2D (Figure 6.3, bottom) is obviously much more turbulent than
DNSQ2D, also exhibiting numerous oblique waves propagating along the up-
stream vortex sheet. The latter breaks down much faster, and the longitudinal
vortices are stretched much more efficiently. Indeed, the maximal vorticity
magnitude is now ~ 4 w; for the whole run. Rollup and pairing events occur
much faster than in the DNS. Notice the complexity of the dynamics: we
very clearly see three-dimensional waves propagating on the upstream vortex
sheet before breaking into quasi-two-dimensional KH vortices stretching fine
longitudinal vortices. There is a first pairing of KH vortices immediately fol-
lowed by a tripling, leading to production of intense, small-scale, disorganized
turbulence. Experimentally observed trends such as the doubling of the size
and spanwise spacing of the longitudinal vortices at every pairing seem to be
correctly reproduced. A movie corresponding to this LES simulation is on the
CD-ROM (Animation 6-1). It is a calculation done on a parallel machine with
sixteen processors using a domain-decomposition method in which the calcu-
lation volume is split into sixteen subdomains, each of which is associated with
a processor. This is shown at the beginning of the movie with a fixed view
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of the vorticity norm. Afterward the calculation displays a domain duplicated
by periodicity in the spanwise direction with vorticity modulus in light blue
on the front and green on the bottom, positive longitudinal vorticity in red,
and negative longitudinal vorticity in dark blue. The dynamics of longitudinal
vortices is very complicated here with events corresponding to merging of
same-sign vortices and events with apparent splitting of a vortex into two.

Wide domain

The vortical structure changes quite radically when the spanwise direction
of the domain doubles. Figure 6.4, taken from Comte et al. [54], shows the
low-pressure and vorticity fields developing from run FSF3DW. It is clear at
least from the pressure that helical pairing develops, as in the experiments
of Browand and Troutt [32]. When the forcing is a three-dimensional ran-
dom white noise (run FSFQ2DW), helical pairing occurs again, as indicated
by the low-pressure maps of Figure 6.5. It is, quite oddly, less intense than
in the quasi-two-dimensional forcing case. However, none of these simula-
tions has reached self-similarity, for rms velocity fluctuations have a departure
of about 20% with respect to the experiments. Thus, calculations in longer
domains are necessary to answer the important question about the exact topol-
ogy (quasi two-dimensional + longitudinal hairpins versus helical-pairing) of
coherent vortices in an unforced, constant-density, spatially growing, mixing
layer.

6.6 Round jet

Our goal here is to demonstrate the ability of the LES to reproduce the
coherent-vortex dynamics in the transitional region of a constant-density
round jet properly. We also show the possibility of controlling the jet behavior
by manipulating the inflow conditions. Some of the detailed results are pre-
sented in Urbin [284]. Because of the diversity of their coherent structures,
axisymmetric jets constitute a prototype of free-shear flows of vital importance
from both a fundamental as well as a more applied point of view. Indeed, a bet-
ter understanding of the jet vortex structures should make possible the active
control of the jet (e.g., spreading rate and mixing enhancement) for engineer-
ing applications (see, e.g., Zaman et al. [296]) especially in combustion and
acoustics. In combustion, flames tend to follow vortical surfaces. In acoustics,
it is clear that coherent vortices constitute, by the localized low pressures they
induce, an important source of pressure waves and hence of noise. Manipu-
lating the vortices in the jet of an airplane turboreactor will then have a direct
effect on the noise emitted by either increasing or reducing it. Controlling a jet
through forcings in the upstream conditions allows us to reduce the spreading
of'the jet in one direction and to enhance it in a perpendicular plane. This type
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Figure 6.4. Wide domain for run FSF3DW. (Top) Low pressure; (bottom) high vorticity.

of control might be favorable for noise reduction. We recall that, in conditions
corresponding to a supersonic transport plane taking off, the acoustic power
emitted by the jet is proportional to some power (= 8) of the jet velocity. Jet
spreading is used as a way to reduce velocity and hence jet noise.

In the past five years, important progress in the experimental methods
of detection and identification has made possible a detailed investigation of
the complex, three-dimensional, coherent vortices imbedded within this flow.
For instance, the influence of the entrainment of the secondary streamwise
vortices has been studied by Liepmann and Gharib [181]. On the numerical
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Figure 6.5. Wide domain for run FSFQ2DW. (Top) Low pressure; (bottom) high vorticity.

side, several simulations of two-dimensional or temporally evolving jets have
been performed. However, very few have investigated the three-dimensionnal
spatial development of the round jet. We show here how LES can be used to
perform a statistical and topological numerical study of the spatial growth of
the round jet from the nozzle up to sixteen diameters downstream.

We first present LES studies carried out by Urbin and co-workers [284—
286] at a Reynolds number of 25,000. The subgrid model used here is the
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SSF model, which is well adapted for transitional flows and accepts nonuni-
form grids. The LES filtered Navier—Stokes equations are solved using the
TRIO-VF code. This industrial software was developed for thermal hydraulics
applications by the Atomic Energy Commission in Grenoble. It uses a finite-
volume method on a structured mesh. It has been used in many LESs of various
flows, such as the study of Silveira-Neto et al. [266] for a backward-facing
step, and is also a part of the backstep study presented in Chapter 2 and for
which statistical results will be given in this chapter. This code, conservative
from the point of view of momentum, is rather diffusive as far as kinetic en-
ergy is concerned. However, we will give new validations of the code, still for
Chapter 2’s backstep, in the following.

Experimental studies presented in Michalke and Hermann [209] have
clearly pointed out the major effect of the inflow momentum boundary layer
thickness 6 and of the ratio R/60 (where R is the jet radius) on the jet’s down-
stream development. It was shown that the detailed shape of the mean velocity
profile strongly influences the nature of the coherent vortices appearing near
the nozzle: Either axisymmetric structures (vortex rings) or helical structure
can indeed develop.

In the simulations presented here, the flow inside the nozzle is not simu-
lated, but a mean axial velocity profile in accordance with the experimental
measurements is imposed:

U(r) = %Uo [1 — tanh Gg (% - g))] , (6.16)

where Uy is the velocity on the axis. We restrict ourselves to a relatively small
value of R/6 = 10 because a correct resolution of the shear zone at the edge of
the nozzle is crucial for reproducing the initial development of the instabilities.
We consider a computational domain starting at the nozzle and extending to
16D (with D = 2R) downstream. The section perpendicular to the jet axis
consists of a square of dimension 10D x 10D, which has been shown to
be sufficient to avoid jet confinement. The computational mesh is refined at
the jet shear layer (stretched mesh). The “natural” jet is forced upstream by
the top-hat profile given by Eq. (6.16), on which a weak, three-dimensional,
white noise is superposed. The “forced” jet development is controlled with
the aid of various forms of deterministic inflow forcing (plus a white noise)
designed to trigger specific types of three-dimensional coherent vortices.

6.6.1 The natural jet

The numerical approach has been validated by comparing the computed statis-
tics with experimental results for the mean and for the rms fluctuating quan-
tities. The frequency spectra have furthermore revealed at the end of the
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Figure 6.6. LES of the natural jet at a Reynolds number of 25,000 using the TRIO finite-
volume code: instantaneous visualization. Light gray indicates a low-pressure isosurface wired
isosurface; longitudinal velocity U = Up/2. To the left is presented the xy cross section through
the jet axis of the vorticity modulus, and to the right the x—z cross section of the velocity
modulus. (Courtesy G. Urbin.)

potential core the emergence of a predominant, vortex-shedding, Strouhal
number,’ Strp = 0.35, in good agreement with the experimental value.

A temporal linear-stability analysis performed on the inlet jet profile given
by Eq. (6.16) (with R/6 = 10) predicts a slightly higher amplification rate for
the axisymmetric (varicose) mode than for the helical mode (see Michalke
and Hermann [209]). In fact, LES verifies that the KH instability along the
jet edge yields vortices further downstream that have mainly an axisymmetric
toroidal shape. However, the simulations reveal that these vortices are not
always present and intermitently bifurcate toward helically shaped vortices
(see Urbin and Métais [285]).

Some of the following results are illustrated by Animation 6-2, which
shows the same quantities as Figure 6.6 taken from the movie. The figure dis-
plays an original vortex arrangement subsequent to the varicose-mode growth,
the “alternate pairing.” Such a vortex interaction was previously observed by
Fouillet [98] and Comte, et al. [53] in the DNS of a temporally evolving round
jet at low Reynolds number (Re = 2,000). The direction normal to the sym-
metry plane of the toroidal vortices tends, during their advection downstream,
to differ from the jet axis. The inclination angle of two consecutive vortices
appears to be of opposite sign, eventually leading to a local pairing with an

° The Strouhal number is normalized by D and Uj.



112

LARGE-EDDY SIMULATIONS OF TURBULENCE

alternate arrangement. Note that inclination of the vortex loops at the end of
the potential core was experimentally observed by Petersen [234]. Experimen-
tal evidence of alternate pairing was also given by Broze and Hussain [34]. As
explained by Silva and Métais [265], this alternate-pairing mode corresponds
to the growth of a subharmonic perturbation (of wavelength double the one
corresponding to the rings) developing after the formation of the primary
rings. Indeed, let us consider a row of successive fundamental vortex rings
that are perfectly axisymmetric whose axis is the jet axis [see Figure 6.7(a)]
and whose spacing is L. Suppose they are submitted to a subharmonic inter-
action that entails displacing them respectively right and left with reference
to the jet axis [see Figure 6.7(b)]. Each displaced vortex ring will feel a lon-
gitudinal velocity reduced at its exterior side with respect to the inner side,
resulting in a torque tending to incline it as indicated on Figure 6.7(c). Finally,
the edges of the rings that come close together will pair [see Figure 6.7(d)].
Alternate pairing therefore presents strong analogies with the helical-pairing
mode observed in plane mixing layers (see the preceding discussion). The
constant-density, free round jet at a Reynolds number of 25,000 has been re-
computed by Silva [264] using the Grenoble spectral-compact code. Results
are displayed in Animation 6-3. One finds qualitatively the same events as in
Animation 6-2, but the flow is more chaotic and complex. This confirms that
the TRIO finite-volume code is more diffusive than our spectral-compact code.

6.6.2 The forced jet

The previous natural jet simulations have therefore revealed three different
types of vortical organization: the toroidal vortices (rings), the helical struc-
ture, and the alternate pairing. We now apply in the LES corresponding to
Animation 6-2 a deterministic inflow perturbation to trigger one of these
three particular flow organizations and to study the influence of the forcing
on the statistics. Crow and Champagne [58] first noticed that the jet response
is maximal with a preferred mode frequency corresponding to Strp between
0.3 and 0.5.

One first applies a periodic fluctuation of frequency corresponding to
Strp = 0.35 superposed on the white noise.

Varicose excitation
We excite the varicose mode by imposing a periodic perturbation (alternately
low speed and high speed) to the axial velocity at the nozzle:

StrpU
U(r) + € Uy sin (271 rg Ot), (6.17)

where U(r) is given by Eq. (6.16) and € = 1%.
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Figure 6.7. Schematic view of alternate pairing in a round jet. (Courtesy C. Silva and Physics
of Fluids [265].)

Comparisons of the velocity fluctuations with experimental results show
that, as opposed to the unexcited jet, a strong and fast amplification of the in-
stability appears. Visualizations indicate that the varicose mode is now present
at every instant from the beginning of the jet up to x = 6 D. Vortex structures
are more intense than in the natural case with well-marked and organized
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Figure 6.8. Forced jet at a Reynolds
number of 25,000 using the TRIO finite-
volume code with varicose-mode exci-
tation. Black and gray indicate, respec-
tively, positive and negative longitudinal
vorticity isosurfaces corresponding to
wyx = £1.2Up/D. Shown are xy and xz
cross sections (through the jet axis) of the
longitudinal vorticity component (min=
— 4Uy/D; max = + 4Up /D).

pressure troughs (Figure 6.8).!% Rings resulting from the varicose mode are
now linked together by alternate longitudinal vortices, which have the same
origin as the hairpins stretched between primary vortices that we have already
observed in LES of quasi-two-dimensional mixing layers. The maximum vor-
ticity within these structures in the jet simulation is about 40% of the vor-
ticity of the associated rings. Longitudinal vortices of the same nature have
already been observed experimentally at moderate Reynolds numbers (see,
e.g., Lasheras et al. [157], Monkewitz and Pfizenmaier [213], and Liepmann
and Gharib [181]). The present simulation would tend to indicate that they are
also present at high Reynolds numbers.!'! These pairs of longitudinal vortices
will, by velocity-induction mechanisms, entrain and eject fluid outside of the
jet, thus creating transverse side jets and “branches.” The latter were studied
numerically in the temporal case by Martin and Meiburg [196] using vortex
methods and by Abid and Brachet [3] using DNS. An interesting question
concerns the azimuthal wavelength of the longitudinal vortices, which corre-
sponds to the most unstable azimuthal mode of the primary rings in Widnall
instability [292]. It is thus this wavelength that forces the wavelength of the
stretched hairpins. The same phenomenon occurs experimentally in the turbu-
lent mixing layer of Bernal and Roshko [23], where the spanwise wavelength
of the longitudinal vortices'? is the same as the most amplified translative mode
of secondary instability analysis carried out by Pierrehumbert and Widnall
[235] and previously mentioned.

10 The axes on this figure and some of the following are misleading. We work actually with an
orthonormal frame where x is the flow direction.

! One should, however, be cautious about the energy-diffusive character of the numerical code,
which might artificially reduce the Reynolds number.

12 1t is of the order of two-thirds of the longitudinal wavelength of the spanwise vortices (see
Lesieur [170], p. 85).
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Figure 6.9. Forced jet at a Reynolds
number of 25,000 using the TRIO finite-
volume code with helical excitation. Quan-
tities are the same as in Figure 6.8.

Helical excitation
The next excitation is designed to trigger the first helical mode by imposing
the following inflow velocity profile:

(6.18)

StrpU
U(r) + € Uy sin(®—2n D 0t> i

D D)2’

where @ stands for the azimuthal angle. Indeed, the response of the jet consists
of the development of a helical coherent vortex structure (Figure 6.9). This
is in concordance with the results of Kusek et al. [150], who experimentally
observed the helical mode development with an appropriate inflow excitation.
The signature of the helical excitation on the statistics is an increase of the
potential core length compared with the natural case and a reduction of the
spreading rate. For the present jet (no swirl), and if molecular viscous effects
are neglected, the Helmholtz—Kelvin theorem applies. Thus, the velocity circu-
lation on a circular contour of large radius contained in a plane perpendicular
to the jet axis and centered on the latter remains zero. This implies that the
longitudinal vorticity flux through the surface limited by this contour is also
zero. The present excitation gives rise to a helix structure that rotates in the
anticlockwise direction when moving away from the nozzle: It is therefore
associated with a negative longitudinal vorticity component. This generation
of negative longitudinal vorticity has to be compensated by regions of posi-
tive longitudinal vorticity. Indeed, in the vicinity of the nozzle, Figure 6.9
shows the appearance of positive longitudinal vorticity on the helix edge.
However, both positive and negative longitudinal vortices do appear further
downstream, but the former are more intense than the latter. At x = 4.5D,
the vorticity maximum within the positive vortices is &~ 50% of the vortic-
ity (modulus) maximum within the helix, whereas it is only &~ 25% in the
negative ones. Martin and Meiburg’s [196] results display the same trend.
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Flapping excitation
Following Silva and Métais [265], we define flapping excitation with the
following upstream velocity:

StrpU 2
U(r) + € Uy sin (2n rDD 1z) sin <%) : (6.19)

Now half of the jet presents a speed excess, whereas a speed defect is imposed
on the other half, and this excitation is applied alternately. Note that this
perturbation has a preferred direction chosen along the y axis. The xy and
xz planes are called, respectively, the bifurcating planes and bisecting planes.
The resulting structures are analogous to those in Figure 6.6 except that the
alternatively inclined vortex rings now appear from the nozzle. These inclined
rings exhibit localized pairing and persist far downstream. As shown by Urbin
[284] with the CEA TRIO-VF code and Silva and M¢étais [265] with the
Grenoble spectral-compact code, the jet is squashed in the bisecting plane and
widens in the bifurcating plane, where the spreading rate is strongly increased
compared with the natural jet case. Many interesting DNS and LES studies of
this type of jet have been carried out by Silva and Métais [265]. They show that
taking the forcing Strouhal number equal to the jet harmonic mode S#7p is not
the best choice for such effects. In fact, a varicose-flapping excitation may be
introduced, which superposes a varicose forcing and a flapping forcing. Silva
and Métais [265] show that the more dramatic effect is obtained in this case
with a harmonic varicose frequency and a subharmonic flapping frequency.
Their simulation is presented in Animation 6-4, where the jet is artificially
rotating from the bisecting plane to the bifurcating one. This LES was done
for a Reynolds number of 5,000, a resolution of 201 x 128 x 128, a noise
amplitude of 1%, and a forcing amplitude of 5%. Positive Q isosurfaces are
shown.

We also recall studies on the “bifurcating” jet of Lee and Reynolds [161]
and Reynolds et al. [241] (see also Parekh et al. [231]). They have experimen-
tally shown that a properly combined axial and helical excitation can cause a
turbulent round jet to split into two distinct jets. The experiment performed
by Longmire and Duong [ 189] using a specially designed nozzle made of two
half nozzles has displayed a similar vortex topology. One of the important
technological applications of this peculiar excitation resides in the ability to
polarize the jet in a preferential direction. Let us mention finally experiments
carried out by Drobniak and Klajny [75] in an acoustically simulated jet at
Reynolds numbers ranging from 5,000 to 100,000, where alternate pairing
could be displayed.

We will show in Chapter 7 new results concerning the same type of control
for the compressible jet in the subsonic and supersonic cases.
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6.7 Backstep

We have already presented in Chapter 2 a study concerning the topology of
coherent vortices generated over a backward-facing step in a flow of uniform
density. It involves a LES based on the SSF model in its four-point formu-
lation in planes parallel to the wall. No wall law is employed. The detailed
computations can be found in Delcayre [69] and Dubief and Delcayre [78].
The code used, TRIO-VF, is the same as for the first jet simulations of Urbin
[284] previously presented. We recall that the flow configuration is the same
as for the DNS of Le et al. [159], which closely resembles the experiment
performed by Jovic and Driver [138]. The calculations were performed with
an inlet mean velocity profile obtained from Spalart’s [273] boundary layer
DNS at Rey = 670 (Res, = 1,000), where 6 and §; are the momentum and
displacement thicknesses, respectively. For this particular profile, the bound-
ary layer thickness is § &~ 6.15; = 1.2H. The step-height Reynolds number
is Rey = UyH /v =~ 5,100. The inlet velocity profile is imposed at 0.3 H (see
Figure 2.9) upstream of the step with a three-dimensional random white noise
of amplitude ~1.25% superimposed on the shear zone.

The computational domain extent is 15H downstream of the step, the
spanwise direction size is 4 H, and in the vertical direction an expansion ratio
of 1.2 is chosen, which corresponds to a domain height of 6 4. The total
resolution of the computational domain is 97 x 34 x 46. The grid is uniform
in the spanwise direction and stretched in the direction normal to the walls
to resolve the boundary layer. Because the grid is structured, the stretching
of the upstream boundary layer also resolves the shear layer that develops
downstream of the step. The spanwise grid spacing is constant and equal
to 30 in wall units of the upstream turbulent boundary layer. The minimum
streamwise resolution is Ax.". = 11 at the step. The maximum is at the exit
boundary (Ax = 70). In the vertical direction, the minimum resolution is
Ayt =3.75 (at the wall), and the maximum is Ay,| = 110.

The reattachment length Xy is overpredicted by the present LES, being
Xr = 7.2H, which is far from the experimental measurement of Jovic and
Driver (Xg = 6.1H). As already discussed in Chapter 2, this is attributable to
the fact that the inflow boundary layer upstream of the step is not simulated
deterministically (see Le et al. [159]). Indeed, we have seen in Chapter 2 that
the absence of the turbulent longitudinal vortices associated with the inflow
boundary layer induces a delay in the transition of the shear layer and an in-
crease of the reattachment length. It was, however, shown by Westphal et al.
[291] that, if the renormalized coordinate X = (x — Xr)/ Xgr was used, sta-
tistical data were quite insensitive to the inflow conditions. This is confirmed
by the comparison among the experiments of Jovic and Driver [138], the DNS
of Le et al. [159], and the present LES presented at the reattachment point

117



118

y/H

y/H

LARGE-EDDY SIMULATIONS OF TURBULENCE

4 - 4 —

’ ] y/H

N
3 A <L
A
2 2L
1+ 1k
0 r 0k
1 1 1 Il
1 0 0.1 0.2
rms(u') /U0

4 4

I y/H s

5H

5L 3tk 4 a LES

i | — Le & Moin

) * Jovic & Driver
2+ 2 L
1= 1L
0+ 0+
1 1 1 Il I} - S T S S S S S S S |
-005 0 005 0.1 015 0.2 -0.005 0 0005 001 0015 002
rms(v'") /U0 —u'v'/U02

Figure 6.10. Backward-facing step. Shown are mean longitudinal velocity, rms longitudinal
and vertical velocity, and Reynolds stresses at the reattachment point. The LES results are
compared with the DNS results of Le et al. [159] and the experimental results of Jovic and Driver
[138]. (Courtesy F. Delcayre.)
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in Figure 6.10. Here, the statistical quantities are averaged over the spanwise
direction, using the periodicity condition, and time. The agreement is found
to be good.

Next, we carry out comparisons with the DNS for various values of the
renormalized coordinate X (Figure 6.11). LES mean velocity profiles in the
reattachment region almost collapse with the DNS. Both profiles still exhibit
an inflectional point at the exit boundary (X = 0.66), indicating that the turbu-
lent boundary layer is very far from being developed. This is explained by the
topological study of Chapter 2, showing downstream of reattachment the per-
sistance of big A vortices originating from the detached KH vortices formed
downstream of the step. Longitudinal turbulent intensities also compare well
with DNS, especially for y/H < 1. The slight underestimation of the longitu-
dinal turbulent intensities for y/H > 1 in the LES could be attributable to the
lack of longitudinal vortices in the inlet boundary layer flow. At the end of the
domain, we can notice the development of a peak in the near-wall region. This
peak proves the redevelopment of the boundary layer. Nevertheless, canonical
turbulent boundary layer profiles are not yet recovered.

6.7.1 Strouhal numbers

Figure 6.12 shows the time-frequency pressure spectra at four positions in the
flow: (1) just behind the step, (2) just before reattachment, (3) just behind reat-
tachment, and (4) much farther downstream. Frequencies f are expressed in
units of Uy/ H and correspond to Strouhal numbers Str = f H/ Uy. Position
(1) is marked by a peak at St = 0.23, indicating the shedding of KH vortices.
At position (2), a second peak of higher amplitude is present at the subhar-
monic Strouhal number 0.12, corresponding physically to helical pairing. At
positions (3) and (4), the two previous Strouhal numbers are still there, but
a third peak forms at Str = 0.07, corresponding to the well-known flapping
of the recirculation bubble. These different Strouhal numbers associated with
the different unsteady phenomena are in good agreement with those previ-
ously found by other authors (see, e.g., Le et al. [159] and Arnal and Friedrich
[9]). Such information regarding the pressure spectra and how they relate
to the vortex dynamics is very important for acoustic studies and control of
aerodynamic noise of cars, trains, and planes in particular.

6.8 New models

As already stressed, the use of Smagorinsky’s model for the dynamic proce-
dure is not compulsory, and other subgrid models may be candidates as well.
We show here how the dynamic procedure may be implemented on the SF
model.
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Figure 6.11. Backward-facing step. Shown are longitudinal mean and rms velocity profiles and
a comparison of the LES with the DNS of Le et al. [159] (straight line). (Courtesy F. Delcayre.)
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Figure 6.12. Backward-facing step. Shown are spanwise-averaged pressure frequency spec-
tra at different positions obtained with LES. (Courtesy F. Delcayre.)

6.8.1 Dynamic structure-function model

We use the same notation as for Smagorinsky’s dynamic model presented in

[Tl 9

Chapter 3, with a double filtering in physical space “” and “7” of respective
width Ax and ¢ Ax, with « > 1. We recall the notation

Tij = uu; — uuy,

and

with Germano’s identity
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The unknown tensors will be modeled with the SF model eddy viscosity
written as

VSR, Ax) = Crs Ax [Fa(X, Ax)]'/?, (6.20)

where Crg is the model constant to be determined, and F>(x, Ax) is the local
second-order velocity structure function relative to the field . We can then
easily show that

~ 1~ —
Ty — 5 Tu 8 = 2Cis Ay 6.21)
with
Ay = Ax [B(E, A28, (6.22)
and
1
’]l'-j — §Zl dij = ZCFSB,-]- (6.23)
with
By = aAx [FaE, arx)]2S,,. (6.24)
From these we obtain
1
Lij = 3Lu 8y = 2CisMy (6.25)

with the same relation as for Smagorinsky’s dynamic mode
M;; = B;j — Ajj. (6.26)

We can then determine the constant Crg with the same problems of overde-
termination as for the Smagorinsky model.

As an example, El Hady and Zang [84] have applied the dynamic SF model
to a compressible boundary above a long body.

6.8.2 Generalized hyperviscosities

One of the drawbacks of the SF model given by Eq. (6.6) is the absence of a
cusp near kc. However, EDQNM data show that the exponential form given
in Eq. (4.26) of Chapter 4 can be correctly approximated by a power law of

the type
(K =114 AN (6.27)
" kc Y kc '

with 2n & 3.7. Lesieur and Métais [168] have shown that v, can be deter-
mined by considering the energy balance between explicit and subgrid-scale



CURRENT CHALLENGES FOR LES

transfers. Indeed, let us write
ke _
/ 2ukE(k, t)dk = € (6.28)
0
with E(k, t) = Cxe*3k=5/3. This yields
3
v =0.512 (7” + 1) . (6.29)

In fact, the EDQNM value of 2n = 3.7 is not so far from the exponent 2n = 4
that would be obtained with a Laplacian operator iterated twice. Therefore,
Lesieur and Métais [168] proposed the idea of a physical-space turbulent dis-
sipative operator based on the SF model and with the “cusp” behavior taken
into account. Among various possibilities, the following one seems to be the
more simple for practical applications: The proposed subgrid dissipative op-
erator is

4
2i [0.661 vFFS;;] +0.661 v;vSF (ﬂ> (VHi;, (6.30)
an s

where v}, = 2.048 is given by Eq. (6.27) with n = 2. In Eq. (6.30), v5F is
given by Eq. (6.6), and the constant 0.661 corresponds to the ratio of the
plateau eddy viscosity v given by Eq. (4.19) to the spectrally averaged eddy
viscosity of Eq. (6.1). We have taken kc = 7r/Ax. The expression (6.30) is
interesting in the sense that it provides an eddy dissipation combining the SF
model with a hyperviscosity (V?)*u;. The latter represents in physical space
the action of the cusp in Kraichnan’s spectral eddy viscosity. This model will
be used in Chapter 8 for LES of the development of a baroclinic instability in
a thermal front within a rotating stratified atmosphere.

6.8.3 Hyperviscosity

The model given by Eq. (6.30) contains a hyperviscous part. Hyperviscosity
models are widely used in the study of geophysical flows because of their
simplicity. They involve replacing the molecular dissipative operator vV?
by (—1)*"1v,(V?)*, where « is a positive integer. Unlike as in (6.30), v, is
here a constant (positive) coefficient that has to be adjusted. This substitution
has been widely used in two-dimensional isotropic turbulence (see Basdevant
and Sadourny [15]) with values of « ranging from 2 to 8. Its effect is to
shift the dissipation toward the neighborhood of k.. This reduces the viscous
dissipation of large coherent structures and is very useful for the study. In
three-dimensional turbulence, hyperviscosity was used by Bartello et al. [14]
to study the influence of a solid-body rotation in homogeneous turbulence
with surprisingly good results. It was also used by Borue and Orszag [28]
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to check, in three-dimensional isotropic helical turbulence, the existence of
a double k=3 cascade of energy and helicity from large to small scales first
discovered by André and Lesieur [6] via an EDQNM study.

6.8.4 Scale-similarity and mixed models

The lack of correlation between the subgrid-scale stress and the large-scale
strain-rate tensors has led Bardina et al. [12] to propose an alternative subgrid-
scale model called the scale-similarity model. This is based on a double-
filtering approach and on the idea that the important interactions between the
resolved and unresolved scales involve the smallest eddies of the former and
the largest eddies of the latter. Bardina et al. suggest evaluating the subgrid
tensor as

T;; = u;il; — il . (6.31)

The analysis of DNS and experimental data [ 12, 188] has shown that the mod-
eled subgrid-scale stress deduced from Eq. (6.31) exhibits a good correlation
with the real (measured) stress. However, when implemented in LES calcu-
lations, the model hardly dissipates any energy. It is therefore necessary to
combine it with an eddy-viscosity-type model such as Smagorinsky’s model
to produce the “mixed” model. Along the lines of Bardina et al’s. model, new
formulations have been proposed to correct for this lack of dissipation. Liu
et al. [188] have proposed the following model:

Ty = Cy (i, — izt ), (6.32)
where Cy is a dimensionless coefficient. The operator ~ consists of a second
filter of different size, as in the dynamic models in physical space already
discussed.

Numerous developments on these types of models may be found in Sagaut
[248].

6.8.5 Other approaches

Piomelli et al. [238] have studied an accelerated, spatially developing, turbu-
lent boundary layer on a flat plate, using a dynamic Smagorinsky model in
which the constant is calculated through a Lagrangian averaging procedure
following the fluid parcel, as proposed by Meneveau et al. [201]. Their model
eliminates sharp fluctuations of Smagorinsky’s coefficient, which would oth-
erwise destabilize the calculations, as already stressed. This method is partic-
ularly useful for studying coherent vortices, for we have seen that they tend to
follow the flow. Piomelli et al.’s [238] LES studies show that high- and low-
speed streaks are more elongated and less undulated, with a decrease of span-
wise velocity fluctuations with respect to the streamwise ones. The number of
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quasi-longitudinal vortices is reduced, and they display the same trends as
the velocity streaks. But the vorticity of these vortices is approximately un-
changed with respect to the zero-pressure-gradient case. This is explained by
Piomelli et al. [238] by the fact that additional vortex stretching caused by the
acceleration is balanced by an increased dissipation of the vortices.

As stressed previously, the subgrid-scale tensor and scalar flux given by
(3.18) are assumed to be strictly proportional to the grid-scale strain-rate
tensor and buoyancy flux, respectively. Abba et al. [1] have recently proposed
an anisotropic formulation using eddy-viscosity and eddy-diffusivity tensors
instead of scalar ones:

T, — %TH 8ij =2 VS — %5,-_,- IZ Vi Sy (6.33)
This formulation enables a better description of the small-scale anisotropy to
be made. In conjunction with the dynamic procedure previously described,
this model has been used successfully in LES of turbulent natural convection.
A dynamic formulation has also been applied by the same authors to a round
jet [2].

Let us quote also the so-called monotonically integrated large-eddy simu-
lations (MILES) methods of Grinstein, Fureby, and co-workers. The method
does not use any eddy viscosity but rather relies on numerical diffusion
brought by high-resolution monotonic numerical algorithms used to solve
Navier—Stokes equations. It is claimed that “implicit [subgrid-scale] models,
provided by intrinsic nonlinear high-frequency filters built into the convection
discretization, are coupled naturally to the resolvable scales of the flow” [104].
This approach is slightly controversial, and we prefer LES methods in which a
physically relevant subgrid model is associated with the less possible diffusive
numerical scheme (like pseudo-spectral methods). The MILES method does,
however, give results as far as applications are concerned for free-shear flows
and wall flows [104, 105, 115]. Simulations of a curved pipe carried out by
Riitten et al. [246] belong to the same family.

Lastly, we mention that many people are currently working along the lines
of defiltering procedures, which allow (if the filter is not a sharp filter in Fourier
space) recovery of some of the subgrid stresses. The reader is referred to the
review of Domaradzki and Adams [72] and the work of Geurts [110, 111] for
more details.

6.9 Animations

Animation 6-1: LES of a constant-density mixing layer (no molecular viscos-
ity). The first part presents a fixed view of the vorticity norm with splitting of
the calculation volume into sixteen subdomains, each of which is associated
to a computer processor. Afterward the domain is doubled by periodicity in
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the spanwise direction with vorticity modulus in light blue in the front (resp.
green in the bottom) and positive longitudinal vorticity in red (resp. negative
in dark blue). (Film 6-1.mpg; courtesy G. Silvestrini.)

Animation 6-2: LES of'a constant-density, free round jet at a Reynolds number
of 25,000 using the CEA TRIO-VF finite-volume code (see Figure 6.6 for
details). The second part of the movie is in slow motion. (Film 6-2.mpg;
courtesy G. Urbin.)

Animation 6-3: LES of a constant-density, free round jet at a Reynolds number
0f 25,000 using the LEGI spectral-compact code. Light gray and red indicate,
respectively, low-pressure and positive Q isosurfaces. (Film 6-3.mpg; courtesy
C. Silva.)

Animation 6-4: LES of a constant-density, forced round jet at a Reynolds
number of 5,000 using the LEGI spectral-compact code, showing positive
Q isosurfaces; the jet rotates from the bisecting to the bifurcating planes. It
is forced by harmonic varicose and subharmonic flapping frequencies (Film
6-4.mpg; courtesy C. Silva.)



7 LES of compressible turbulence

Compressible turbulence has extremely important applications in subsonic,
supersonic, and hypersonic aerodynamics. More generally, and even at low
Mach numbers, strong density differences caused by intense heating (in
combustion for instance) may have profound consequences on the flow
structure and the associated mixing. Heating a wall may, for instance, com-
pletely destabilize a boundary layer, as will be shown for some applica-
tions in this chapter. The chapter is organized as follows. We will first
present the compressible LES formalism for an ideal gas in a simple way,
allowing us to generalize the use of incompressible subgrid models. This
is possible using the concept of density-weighted Favre filtering together
with the introduction of a macropressure and a macrotemperature related
by the ideal-gas state equation. Then we will study compressible mixing
layers at varying convective Mach numbers. Afterward we will consider
low or moderate Mach numbers in boundary layers, channel, cavities, and
separated flows and also a transonic rectangular cavity. A supersonic ap-
plication relating to the European space shuttle Hermes rear-flap heating
during atmospheric reentry will be discussed in detail. This problem, stud-
ied in Grenoble in 1993, has acquired a tragic topicality with the loss of
the American Columbia shuttle on February 1, 2003. The latter disinte-
grated during reentry at an approximate elevation of 60 km and a speed of
21,000 km/h while making a turn at an angle of 57°. It seems that the left
wing overheated, possibly because of damage to the protection tiles during
takeoff.

Another aerospace application will be studied, namely, a heated chan-
nel related to the cooling of the European Ariane V launcher Vulcain
engine.
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7.1 Simplified compressible LES formalism

7.1.1 Compressible Navier-Stokes equations
In Cartesian coordinates, the compressible Navier—Stokes equations can be
cast in the following flux form:
oU 0F, 0J0F, 0F;
— =4 —2 =0, 7.1
ot 0x1 + 0x) + 0x3 7.1
where

U= "(p, pur, pus, pus, pe) (7.2)
is a matrix of density, momentum, and total energy defined here for an ideal
gas,

pe=p Cy T+ 1p(ui+u3+u3), (73)

so that gravity effects will be discarded. They are totally negligible in all the
applications considered in the following. The fluxes F; read Vi € {1, 2, 3},

PU;
pujuy — 0]

Fi = | pujuz —oiz , (7.4)
pu;u3 — 053

. oT

eu; — U0 —A—

p JOij 9x;

where A = pC,« is the thermal conductivity (and « is the thermal diffusivity).
Equation (7.1) corresponds to continuity, momentum, and energy budgets.

The components o;; of the stress tensor are still given by Newton’s law,
0jj = —p dij +2und;;, (7.5)
in which

1[|0u; ou; 2
A== |22 L, 7.6
J 2[ax,-+axj 3(V) ’} (76)

denotes now the deviator of the deformation tensor. This yields
pU;
puiuy + p 81 —2uAdn
Fi = | pujus + p di» —2ndn . (7.7)
pujuz + p 83 — 2jud;3 9T

s = 2uu i A — —
(pe + pyus = 2y Ay =3 o

The Sutherland empirical law,

1/2
T 1+ 8/273.15
) + 5/ (7.8)

T) = u(273.15 ,
wI) = ul )<273.15 1+5/T
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with (£(273.15) = 1.711 x 107> P/ and S = 110.4 K, and its extension to
temperatures lower than 120 K,

w(T) = u(120) T/120 ¥ T < 120, (7.9)

are prescribed for molecular viscosity. Thermal conductivity A(7) is related
to the molecular Prandtl number by

pro? = G
K MT)

In air at ambient temperature, the latter is equal to 0.7. The equation of state

(7.10)

p = RpT (7.11)

closes the system, with R = C, — C, = % —=287.06] - kg~! - K~ forair at
ambient temperature. We recall also that y = C,,/C,.

7.1.2 Compressible filtered equations

As in the incompressible regime, we introduce the low-pass filter bar of width
Ax, which is larger by hypothesis than the Kolmogorov scale. Application of
this filter' to the equations in the previous section yields

U 0F, 0F, OF;
+ +

ot x| ax) 0x3 =0, (7.12)

with
pe = pe, T + 5 p(ud + u3 + ul) (7.13)

and
P = pRT. (7.14)

Favre averages are density-weighted ensemble averages. As stressed by Favre
[92], they were introduced by Hesselberg [123] and used by Dedebant and
Wehrle [68], Van Mieghen and Dufour [287], and Blackadar [25] mainly
to take into account density differences in meteorological turbulence. Favre
[92,93,95] (see also [94]) developed the formalism extensively to study com-
pressible turbulence. More specifically, the Favre average ( f ) of a function
£ is defined as

(f)r= (s (7.15)
(p)
in such a way that we have
(0f ) = (XS )¥- (7.16)

! The width is assumed to be the same in all three spatial directions.

129



130

LARGE-EDDY SIMULATIONS OF TURBULENCE

Favre [92] thus studied turbulent-gas statistical equations, mass, momentum,
kinetic energy (mean flow and fluctuations), enthalpy, entropy, and tempera-
ture. Favre averaging has been used all over the world with great success in
compressible-turbulence modeling, and it is employed daily in the industry.
Let us note also that the high-quality systematic measurements of turbulent
velocity space—time correlations made by Favre, Coantic, Dumas, Dussauge,
Gaviglio, and co-workers in Marseille are pioneering from the standpoint of
coherent vortices (see Favre [95]). In particular, correlations for incompress-
ible and supersonic boundary layers provide clear evidence that structures
organized in space travel at some velocity in the flow. The reader is also re-
ferred to Smits and Dussauge [270] for very useful experimental information
on compressible turbulence.

It is convenient for LES purposes to introduce a density-weighted Favre
filter (~) defined, for a given variable ¢, by

¢ = @. (7.17)
0

This filter has of course nothing to do with the second filter introduced previ-
ously for the dynamic-model approach in physical space. We then have

pP =p¢ (7.18)
and
U = "(p, pit, pitz, pits, p €). (7.19)

The bar-filtered total energy can then be written as

pe=pe=75C, T+ 1p@l+ul+ud) (7.20)

if we neglect variations of C, in the averaging. The same can be done for C,
and hence for R. The resolved bar-filtered fluxes F; are then

pUi
puiuy + p 8 — 2udi
F; = | pujuz + P 82 — 2pdis (7.21)
puiuz + p diz — 2ud;3 Y
(pe+pu;  —2nd;ju; —)La—i

with the filtered equation of state
7 =pRT. (7.22)

We reproduce now an analysis carried out in Grenoble by Ducros [79].
From the expression of U and the bar-filtered energy, it is clear that the relevant
variables for the LES problem are p and the Favre-filtered quantities u; and e.
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Once one has decided to work with these variables, it is then compulsory to
introduce the subgrid-stress tensor 7 of components

Zj = —puUu; —‘l_ﬁaiﬁj, (723)

which we split into its isotropic and deviatoric parts, the latter being noted 7:

1 1
’]l'-j = Zj — g’]};&j +§7718ij. (7.24)
—_———
T,'j

Equations (7.21) and (7.20) then read

o

| pmd A+ (P = 3T $i — T — 2pda

F; = | pujiy + (p — %771) 8in — Tio — 2udin (7.25)
piils + (p— 3Tn) i3 — s = 2udis o
(pe + plu; —2nAjju; — Aa—xj

and
o~ 1
ﬁe:pCﬂV%Epw3+uf+uf}—5Zh (7.26)

where the latter is obtained by taking the trace of Eq. (7.23). In the same way as
for the incompressible case (see Chapter 3), we introduce the macropressure

1
o =p- T (7.27)

Let us rewrite Eq. (7.26) as

—~ ~ 1_ - ~ ~
pe=7pCy (T EYe 5771> + 2P (7 + i” +113°) (7.28)
v
and introduce a macrotemperature
~ 1
0 =T— 5C —T (7.29)
v

such that the bar-filter energy equation becomes
- _ = 1wy ~2,
pe=pCvz9+§p(u1 +ur” + u3z”). (7.30)

The bar-filtered equation of state (7.22) then reads
R 1
= pRY - =7
w = pRV + (2 C. 3) i
3y =5
6

— 5RO +

T (7.31)
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If we consider from now on that & is computable, it is sensible to involve it
in the definition of a subgrid heat-flux vector, denoted @, of components

Q; = —(pe + pu; + (pe + o). (7.32)

The exact expression of the filtered fluxes is now

P
puiy + @ 81 — T — 2 dn
F = | pitiits + @ 81 — 1o — 21 Ai - (7133
puiis + @ 83 — T3 — 2udis Y
(pe+mu;  — Qi —2pdiju; — Ka

Now, we need an equation of state relating the macropressure and macro-
temperature as well as closures to express the subgrid and molecular stresses.

7.1.3 Compressible LES equations
We introduce the subgrid Mach number

My = 20 7.34
Sgs_w7 ( )

where we recall that ¢> = y RT, and thus we have also
Ty = y Migsh. (7.35)

In compressible subgrid modeling, there are several options for the treatment
of the uncomputable term 7;;:

e Simply neglect it in front of p, assuming as in Erlebacher et al. [87] that
¥ Migs < 1 everywhere.

* Model it, as proposed by Yoshizawa [295], in a way that is consistent with
the model chosen for T (see, e.g., Moin et al. [211]). Note that this was the
initial choice of Erlebacher et al. [86].

e Use the formalism of macropressure and macrotemperature we have
introduced.

We choose the third possibility. [f we consider Eq. (7.31), we notice that, for
monatomic gases like argon or helium (for which y = 5/3), the contribution
of 7y, to this equation is quite negligible at any Mach number. It is extremely
tempting to generalize this to air by assuming

@ ~ DRY, (7.36)
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which is justified if the ratio of the second to the first term on the r.h.s. of
Eq. (7.31) is much smaller than 1, which yields

|3y — 5]
6
This is much better than assuming yMégS <« 1: For instance, if y = 1.4 (air
at ambient temperature), the former condition is improved by a factor of 7.5;
if y = 1.2 (burnt gases), the factor is 4.3.

Notice that the same modified temperature as our macrotemperature is
present in the work of Vreman et al. [289]. However, there it is associated
with a different pressure than the macropressure, namely,

y—1
2
which is exactly p R®. Their analysis of various energy subgrid terms differs

from that of Ducros [79].

Now we return to Eq. (7.33), for which we invoke the usual eddy-viscosity

and diffusivity models in terms of Favre-filtered quantities in the form

Y Migs < 1. (7.37)

Pv=D— T, (7.38)

~

Tij = ﬁVtAij’ (739)

= v 00
OixpC)p Pri ox
Expressions for vi(#) and Prq used in the following compressible simulations
correspond to the incompressible models.
The remaining noncomputable terms are molecular viscous and diffu-
sive terms, which can be considered of less importance at sufficiently large
Reynolds number.”? We therefore simply replace Eq. (7.33) by

(7.40)

pi;
pititt + @ i1 — 2( + pvi) Ay
F; = | pitiiiz + @ 82 — 2( + pvi) iz . (7.41)
puiuz + @ 83 — 2(in + pv,) A3 59
@2+ o)l 2 — [+ ACy 7] 5=

in which /1 and A are linked to ¥ through the Sutherland relation (7.8) with
a constant molecular Prandtl number assumption Pr = C, (1) /A() =0.7
being made.

What is remarkable is that this system is equivalent to the compress-
ible Navier—Stokes equations with the following changes: u; — u;, p — p,

2 This is certainly questionable in a hypersonic boundary layer close to the wall, where the
intense heating significantly increases molecular diffusion. However, the LES of the temporal
boundary layer at Mach 4.5 carried out successfully by Ducros et al. [80] using the SF model
does not seem to be affected by major problems at the wall.
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T — 9% p— w,e— e u—> L+ pv (exceptin the energy equation), and
A — A+ pC »Vt/ Pri. Such a choice had been made heuristically in Grenoble
before the present formalism was developed (see, e.g., Normand and Lesieur
[221]). The heuristic choice was based on arguments of the type that small
scales could not be significantly affected by compressibility if the large-scale
Mach number was not too high. In fact, we have seen that the introduction of
macropressure and macrotemperature is a powerful tool, allowing us to push
the validity of this model to much higher Mach numbers.

7.2 Compressible mixing layer

7.2.1 Convective Mach number

We first consider a spatially growing mixing layer between two parallel flows
in the same direction of velocities (71 and 172. We assume that the two flows
have different densities p; and p, at infinity in the transverse direction but
maintain the same pressure. Let 77 and 75 be the corresponding temperatures.
The associated sound speeds are ¢; = /y RTj and ¢; = /¥ RT> (we suppose
that y and R are the same in each layer). In fact, the interesting Mach numbers
are the convective Mach numbers of the two layers, Mél) and Méz), in a frame
moving with U,, the velocity of the large vortices (Bogdanoff [27]). These
Mach numbers are

=Yl o Y=t (7.42)

1 2

Assuming continuity of the dynamic pressure in the two flows about the
stagnation point between vortices, we can show that

U1C2+U201 1 +%\/ ;02//)1
U, = = U . (7.43)
cr+ao L+ +/p2/p1
Then, within this assumption, the convective Mach numbers are both equal to
U, — U U
My=—"1—22_~2 (7.44)
c1+ o c

where 2U is the velocity difference, and ¢ = (¢ + ¢;)/2 is an average sound
velocity between the two layers. This expression allows us to recover the value
U, = (U; + U,)/2 in the incompressible uniform-density case. Papamoschou
and Roshko [230] have shown experimentally that the equality of the two con-
vective Mach numbers is valid up to M, & 0.6, which means that the dynamic
pressure continuity assumption made at the stagnation region no longer holds
above this threshold. These experiments also show a dramatic decrease of the
spreading rate of the mixing layer with respect to the incompressible value
between M, ~ 0.4 and M, ~ 0.9. In fact, above the value of 0.6, what we call
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M. is the highest of the two convective Mach numbers. Above M, = 1, the
spreading rate saturates at about 40% the value of the incompressible case.

7.2.2 Temporal mixing layer

For a temporal mixing layer, the previous relations apply with U, = —U, = U
and thus the convective Mach number is still given by
U
M, = —. (7.45)
¢

Because p; # p1, the velocity of KH vortices is no longer zero as in the
constant-density case and now equals U(1 — \/p2/p1)/(1 + +/p2/p1). The
initial convective Mach number Méi) will then be defined by Eq. (7.45). If it
is greater than 0.6, it is probable that the convective Mach numbers of both
layers will become different from Mc(i).

We first review the linear-stability analyses of the compressible temporal
mixing layer, following Lesieur ([170], p. 442). The inviscid linear-stability
analysis in the two-dimensional case was performed by Lessen etal. [178, 179]
and Blumen [26]. The stability diagram found by the latter (for y = 1.4)
shows that the maximum amplification rate is a decreasing function of the
initial Mach number with a drastic change in the slope at Méi) = 0.6. Two-
dimensional DNS of Normand [220] show an inhibition of KH instability
for Méi) > 0.6: There is hardly any rollup of the vortices, which remain ex-
tremely flat and merge “longitudinally” without turning around each other.
In contrast, for MY < 0.6, rollup and pairing occur qualitatively in the same
fashion as in the incompressible case, although they are delayed by factors
corresponding exactly to the amplification rates predicted by Blumen [26].
Another interesting feature in these two-dimensional simulations is the ap-
pearance of shocklets on the edge of the vortices above Mc(i) = 0.7-0.8. They
are displayed in Lesieur ([170], p. 443) and are analogous to shocks on a
transonic wing. It was shown numerically by Fouillet [98] that they disappear
in two dimensions at higher convective Mach numbers.

The three-dimensional linear-stability analysis of the compressible tem-
poral mixing layer was carried out by Sandham and Reynolds [253, 254].
They showed that the dominant instability becomes three-dimensional when
ML exceeds 0.6. They also carried out DNS, with the initial forcing yield-
ing KH vortices undergoing translative instability without compressibility,
and they found at a convective Mach number of 1 a set of large staggered
A vortices. Fouillet [98] (see also Comte et al. [53]) carried out a DNS
of a compressible temporal mixing layer using the compressible Navier—
Stokes solver COMPRESS developed in Grenoble by Normand and Lesieur
[221]. Ituses MacCormack’s [ 193] predictor—corrector scheme of fourth order
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(for nonlinear terms) in space, as modified by Gottlieb and Turkel [114].
Time accuracy is of second order. The Reynolds number, based on U and
the initial vorticity thickness, is 100, as in the incompressible DNS of Comte
etal. [52]. Fouillet also takes the same domain size in the x direction, L, equal
to four fundamental Michalke’s [208] incompressible waves. Such a system,
perturbed by a three-dimensional white-noise initial perturbation superposed
to the hyperbolic-tangent velocity, was able to produce the helical-pairing
interaction in the incompressible DNS of Comte et al. [52]. Recall that we
have also recovered such an interaction using spectral eddy-viscosity LES
in Chapter 5. Fouillet’s initial temperature profile is determined with the aid
of Crocco—Busemann’s relation, and he still applies the three-dimensional
random perturbation. The spanwise size of the domain L verifies the relation

MY cos = 0.6, (7.46)

with tan® = L,/L,. Such a relation comes from the linear-stability study of
Sandham and Reynolds [253] and enables L to be fixed to the most amplified
spanwise wavelength within the linear-stability study. The resolution of the
simulation is 48 with a grid refinement in the central vortical region. We
describe now DNSs at three different initial convective Mach numbers: 0.3,
0.8, and 1. Figure 7.1 shows, for Mc(i) = 0.3, the time evolution at three in-
stants (25, 45, and 50 §; / U, from top to bottom) of a top view of low-pressure
isosurfaces (left) and vortex lines colored by pressure (right). One sees very
nicely the staggered organization of the vortex lines yielding the helical pair-
ing. This is very close to what we have observed in incompressible DNS and
LES with the same forcing.

Figure 7.2 shows the same simulation (instants 50, 60, and 100) for Mc(i) =
0.8. One still sees the formation of a staggered pattern at times delayed by
compressibility, but there is no helical pairing at the end, where the big As
lie above each other, as a side view indicates. An interesting feature is also
the longitudinal reconnection of pressure into tubes following the legs of the
As. This is an example in which low pressure ceases to follow the coherent
vortices.’ Observe also that, because of self-induction, the arrows of the As
get rounded and take on a hairpin shape, as do the boundary-layer vortices. For
Mc(i) = 1 (Figure 7.3), an analogous temporal evolution is observed, although
it is strongly delayed and the level of turbulence generated is weaker. Vortex
lines are much less convoluted than in the preceding case, and pressure struc-
tures are of smaller section. At the end of the simulation (z = 140), we have
in fact the same structure as the one found by Sandham and Reynolds with
their translative-type initial state. A side view of the vortex lines at this time

3 This shows the difficulty of coherent-vortex recognition and confirms the need to have several
visualization devices to understand turbulent flow dynamics.
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Figure 7.1. Top view of low-pressure isosurfaces (left) and vortex lines (right) in the DNS of a
compressible temporal mixing layer at initial convective Mach number of 0.3 and at times (in
units of §; /U, from top to bottom) 25, 45, and 50. (From Fouillet [98].)

(presented in Figure 7.4) shows that the two A vortices are stretched in par-
allel planes. They remain far from each other, in particular at the level of
their tips, although the pressure structures are longitudinally reconnected.
The absence of pairing confirms the quasi-total inhibition of KH instability
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Figure 7.2. Same as Figure 7.1 at MC([) = 0.8 for times (in units of §; /U, from top to bottom)
50, 60, and 100. (From Fouillet [98].)
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Figure 7.3. Same as Figure 7.1 at MY = 1 for times (in units of & /U, from top to bottom) 100,
120, and 140. (From Fouillet [98].)

by compressibility as soon as the convective Mach number approaches unity.
This is certainly the reason why compressibility inhibits the spreading rates.
By contrast, it favors the formation of longitudinal vortices. In fact, helical
pairing in Fouillet’s calculations is inhibited above M =0.6-0.7.

A question arises about the time persistence of these coherent vortices.
Pantano and Sarkar [229] have pointed out that (even in the weakly compress-
ible case) the structures in a temporal-mixing layer DNS did not persist at very
large times and eventually broke up into disordered turbulence not far from
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Figure 7.4. Side view (in the xy plane) of
the vortex lines at t = 140 for MC(’) =1. (From
Fouillet [98].)

isotropy. The same was found in very well resolved LES initially involving
twelve fundamental wavelengths carried out by Beer [20]. Figures 7.5 and 7.6
present for the latter simulations a view of the developed state for convective
Mach numbers of, respectively, 0.2, 0.4 (Figure 7.5), 0.6, and 0.8 (Figure 7.6).
It is clear that increasing the convective Mach number significantly reduces
the size of turbulent structures.

However, box finite-size effects might contribute to the observed three-
dimensionalization. It is therefore of interest to return to spatially growing
mixing-layer simulations.

7.2.3 Spatial mixing layer

Comte et al. [53] also performed with the same code-underresolved DNS of
three-dimensional, spatially growing, compressible mixing layers at a reso-
lution of 80 x 40 x 30. In the first simulation, the Mach numbers of the two
currents are respectively 1 and 0.27, and the convective Mach number is 0.29.
A weak, three-dimensional, random perturbation, imposed upstream on the
constant average velocity (U; + U,)/2 and the hyperbolic-tangent profile is
regenerated at each time step. Figure 7.7 shows in this case the low-pressure
isosurfaces (dark gray) with an isosurface of the average density (o1 + p2)/2
(light gray) materializing the interface between the two layers. This is obvi-
ously the same type of helical-pairing configuration we have obtained in this
book with incompressible LES in wide domains, giving rise to branchings
and local dislocations similar to the incompressible experimental findings of
Browand and Troutt [32]. This gives us some confidence in the simulation of
Figure 7.7 and validates in some sense the numerical method used. The simu-
lation at M, = 0.7 (Figure 7.8) has a totally different structure. One observes
a pattern of elongated staggered A vortices very similar to what was obtained
in the temporal case at Mc(i) = 0.8.

More recent results come from the work of Doris [73], who studied the
spatial mixing layer at M. = 0.64 and M. = 1 using a mixed model. The
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Figure 7.5. Perspective view of Q colored by longitudinal velocity in a developed, turbulent,
temporal mixing layer LES carried out by Beer [20]. (Top) MC(’) = 0.2; (bottom) MC(') =0.4.

upstream random forcing is quasi-two-dimensional with a longitudinal veloc-
ity ten times larger than the spanwise one and no energy in the third direction.
Vortices are visualized with the aid of the Q-criterion. At M, = 0.64, heli-
cal pairing is observed with various amplitudes of the upstream forcing. At
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Figure 7.6. Same as Figure 7.5 for (top) MY = 0.6 and (bottom) M = 0.8. (Courtesy A. Beer)

M. = 1, Doris notes the existence of large A-shaped structures without heli-
cal pairing within a highly complex three-dimensional flow. Various statistical
quantities do not compare very well with the experiments of De Bisschop et al.
[67] and Chambres [37].
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Figure 7.7. Weakly compressible spatial mixing layer at M. = 0.3 showing isobaric low-
pressure isosurface (dark gray) and isopycnal interface (light gray). (From Comte et al. [53].)

7.2.4 Compressible round jets

We show now several LESs of nonheated compressible round jets at Mach 0.7
and 1.4 carried out by Maidi and Lesieur in Grenoble. The jets are initiated
by an upstream velocity profile, as in Chapter 6, and do not exit from real
nozzles. Thus, in the supersonic regime, shocks and Mach waves, which are
an important source of noise (screech noise in particular), cannot be obtained
in these simulations. They are, however, interesting as far as coherent-vortex
dynamics is concerned. Reynolds (Re) and Mach (M) numbers are based
on quantities defined upstream (velocity at the jet center, jet diameter, and
temperature). The subgrid-scale model is the FSF model. Boundary conditions
of the Poinsot—Lele type [240] are used on the sides and downstream of the
computational domain. To absorb downstream parasitic reflections, a sponge
zone has been introduced downstream.

Code validation
The LES code was first validated by statistical comparisons with DNS of
Freund [101] and the experiment of Stromberg et al. [276]. The upstream

Figure 7.8. Spatial mixing layer at M. = 0.7. Shown are positive (white) and negative (black)
vorticity components at a threshold of 10% of the upstream maximal vorticity with the isopycnal
interface (light gray). (From Comte et al. [53].)
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Figure 7.9. Forced compressible jet at Mach 0.9 and a Reynolds number of 3,600 of the LES
with Freund’s DNS and Stromberg et al.’s experiment. Mean longitudinal velocity is shown (a)
at the jet centerline as a function of x and (b) as a function of r for various x.

velocity profile is forced here by the following periodic excitation:

Ur)= % |:1 — tanh (2.8 (% — §)>:| |:1 + € sin (271@0] ,

(7.47)
with
Strp =0.45, € =0.0025, M =0.9, Re=3,600.

A nonuniform Cartesian grid of 100 x 74 x 74 points is used. Figure 7.9(a)
shows mean longitudinal velocity profiles on the jet centerline as a function
of x /R obtained in our LES, in Freund’s DNS [101], and in the experiment
of Stromberg et al. [276]. Figure 7.9(b) displays mean longitudinal velocity
as a funtion of 7 for various downstream distances x. The two simulations are
very close to the experiment. This shows that LES is a good and cheap tool
for simulations of low-Reynolds-number flows.

Subsonic free jet at Re = 36,000
The upstream velocity profile is still of the hyperbolic-tangent type:

u+U, U -U R R

L T | (S (22| (748)
2 2 0 R r
where U, is the velocity at the jet center and U, is a weak coflow of the same

sign.* The two other velocity components are zero. This velocity profile is per-
turbed by a three-dimensional isotropic white noise. The Mach number is 0.7,

Ur) =

 Coflows are used in turbojet engines as a way to reduce noise.
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Figure 7.10. (Top) Free jet at Mach 0.7 and a Reynolds number of 36,000. The Q isosurfaces
are colored by longitudinal vorticity. (Bottom) The same jet at Mach 1.4. (Courtesy M. Maidi.)

and so the convective Mach number is ~0.35. This is weak in comparison
with values of the order of 0.6—0.7 at which compressibility effects start being
important. Because the jet is nonheated, one may expect a jet behavior close
to constant-density jets. Figure 7.10 (top) shows at a time of 300D /(U; — Uy)
positive-Q isosurfaces colored by longitudinal vorticity. One sees clearly up-
stream the shedding of quasi-axisymmetric vortex rings stretching longitudi-
nal vortices just before the appearance of alternate pairing. Hence the three-
dimensional perturbation caused by fluid lateral ejection owing to longitudinal
vortices seems to trigger alternate pairing of vortex rings. More downstream,
the flow contains a very chaotic superposition of alternate pairing of rings and
small-scale—developed turbulence. From a statistical point of view, the flow
in the jet central region is close to isotropic turbulence.

This LES can be validated against experimental measurements of Hussein
et al. [131] obtained for the jet self-similar region. Figures 7.11(a)-7.11(d)
display radial profiles of, respectively, the mean longitudinal velocity and
Reynolds stresses at four different downstream distances between x /R = 27
and x/R = 28.5. One sees a good merging of the profiles, which confirms
similitude within this fully developed turbulence region.

Supersonic free jet at Re = 36,000

For a Mach number of 1.4, which corresponds to a convective Mach number of
~0.7, Figure 7.10 (bottom) presents the jet dynamics att = 300D /(U; — U»))
visualized by Q and longitudinal vorticity. We see the quasi-total disappear-
ance of the axisymmetric mode, and vortex rings exhibit helical pairing imme-
diately downstream of the nozzle. This is accompanied by an intense reduction
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Figure 7.11. Samejetasin Figure 7.10 for developed region. Comparisons of LES with Hussein
et al.’s experiments: (a) longitudinal velocity; (b) longitudinal Reynolds stress; (c) shear stress;
(d) radial Reynolds stress. (Courtesy M. Maidi.)

of the jet spreading rate, in agreement with three-dimensional linear-stability
analyses of the mixing layer carried out by Sandham and Reynolds [253].
Further downstream, the jet suddenly three-dimensionalizes in the small scales
and starts increasing at rates close to the subsonic regime. However, at any
given downstream distance, the jet is much more confined than in the sub-
sonic case. Recall that DNS of three-dimensional plane mixing layers show
an inhibition of vortex pairing above a convective Mach number of the order
0f 0.6 to 0.7. No such effect is observed for these axisymmetric mixing layers
in terms of alternate pairing, and higher Mach number LESs are needed.

We show now some statistics in this case, which have been taken over a
period of 300D /(U — U,), which is sufficient to have statistical convergence.
Figure 7.12(a) presents a comparison for the two Mach numbers 0.7 and 1.4 of
the mean longitudinal velocity on the axis as a function of x /D. The velocity
drop around x/D = 5.5 at Mach 0.7 indicates the end of the potential core.
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Figure 7.12. Comparisons between the subsonic and supersonic jets for (a) longitudinal ve-
locity and (b) jet thickness.

The potential-core length is thus 5.5D in this case. It is 7.7D at Mach 1.4,
which is an increase of 27%. The spatial evolution with x of the jet width is
presented on Figure 7.12(b). We see that both simulations give the same result
up to x/D =~ 5.5. Then the subsonic jet transitions to developed turbulence
and spreads linearly more rapidly. The supersonic jet widens at a weaker
rate up to x/D ~ 10. Afterward it develops into turbulence, with the same
growth rate as the subsonic jet. Comparison of the Reynolds-stress profiles
for the two Mach numbers are given in Figure 7.13. These quantities have
been calculated at the end of the potential core. Shear ({(uy 1)), radial ((u/1")),
and azimuthal ({(#u))) components are strongly reduced by compressibility.
In contrast, the axial component (uyu; ) is weakly affected and even increases
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Figure 7.13. Radial profiles of Reynolds stresses at the end of the potential core at (a) Mach 0.7
and (b) Mach 1.4.

147



148

LARGE-EDDY SIMULATIONS OF TURBULENCE

Figure 7.14. Harmonic-subharmonic varicose-flapping forcing at Mach 0.7 and a Reynolds
number of 36,000. Isosurfaces of Q are colored by longitudinal vorticity. (Top) View of the
bifurcating plane. (Bottom) View of the bisecting plane.

Figure 7.15. Harmonic—subharmonic varicose-flapping forcing at Mach 1.4 and a Reynolds
number of 36,000. Isosurfaces of Q are colored by longitudinal vorticity. (Top) View of the
bifurcating plane. (Bottom) View of the bisecting plane.
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slightly. This agrees with the experiments of Goebel and Dutton [112] and
Urban and Mungal [283] and with the DNS of Freund et al. [102]. However,
the term (u;uy) decreases when the Mach number increases in the experiments
of Samimy and Elliott [85, 252].

Varicose-flapping jet control

Here we show effects on the jet of a varicose-flapping excitation such as
considered in Chapter 6, where the varicose mode is harmonic and the flapping
mode is subharmonic.

At Mach 0.7, we take Strp = 0.39, which corresponds to the frequency of
vortices at the end of the potential core for the free subsonic jet. The Reynolds
number is Re = 36,000. Figure 7.14 displays in this case Q isosurfaces col-
ored by longitudinal vorticity in the bifurcating plane and in the bisecting
plane.

At Mach 1.4, we have Strp = 0.44. Figure 7.15 shows the resulting flow.
The delay in the development of KH instability is recovered.

7.3 Weakly compressible wall flows

7.3.1 LES of spatially developing boundary layers

Lesieur ([170], pp. 450—452) reported a LES by Ducros et al. [80] of a temporal
(periodic in the flow direction) compressible boundary layer on an adiabatic
wall at a Mach number at infinity of M., = 4.5. The simulation was done
using the standard SF model, which enables in this case the simulation to
continue beyond transition. However, as already stressed, this model does not
work for transition in a boundary layer at low Mach number (or for incom-
pressible flow) at which, like the Smagorinsky model, it is too dissipative and
prevents small perturbations from degenerating into turbulence. Conversely,
this model has been used with success in its filtered version (FSF model) for
the simulation of M,, = 0.5 boundary layer of an ideal gas developing spa-
tially over an adiabiatic flat plate with a low level of upstream forcing (Ducros
et al. [81]). We present this work here, in which compressibility effects are
very weak close to the wall, as a way to better understand the very difficult
problems of transition to turbulence and the nature of developed turbulence
in an incompressible boundary layer without a pressure gradient. In the work
of Ducros et al. [81], periodicity is assumed in the spanwise direction. Non-
reflective boundary conditions (based on the Thompson characteristic method
[279]) are prescribed at the outlet and the upper boundaries. With the min-
imal resolution of 650 x 32 x 20 resolution points in the streamwise (x;),
transverse (x,), and spanwise directions (x3), respectively, covering a range of
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streamwise Reynolds numbers Re, € [3.4 x 10°, 1.1 x 10°], transition has
been obtained for 80 hours of time processing on a CRAY 2 machine (whereas
DNS of the entire transition takes about ten times longer). The flow upstream
is the superposition of the laminar profile at this Mach, a two-dimensional
perturbation forcing the most amplified Tollmien—Schlichting mode, and a
three-dimensional white noise such that

U(0, x2, x3, 1) = Upam(x2) + 5 X 107 0(x2) +8 x 1077 Urand(x2, X3, 1),
(7.49)

where Ujam(x7) is the laminar profile of the similarity equations, U (x) is the
most amplified eigenmode of the two-dimensional Tollmien—Schlichting (TS)
waves, and Upang(x2, X3, 1) is a randomly chosen, three-dimensional, white
noise of variance U2,. The upstream Reynolds number based on the dis-
placement thickness is Rs, = 1,000. This is supercritical with respect to the
critical value of 520 predicted by the linear-stability theory in the incompress-
ible case, which justifies the TS wave contribution in the upstream field. It
should be stressed that simulating a complete boundary-layer® transition (up
to developed turbulence), starting upstream from a subcritical laminar pro-
file perturbed by a weak three-dimensional perturbation, is not possible right
now because of the excessive computational cost in simulating the very slow
growth of the viscous instabilities involved.

We return to the Ducros et al. [81] LES, where we see how the TS wave
generated upstream propagates downstream. First, quasi-two-dimensional bil-
lows of relatively low pressure and high vorticity form and travel with the wave
velocity. A top view of the low-pressure and longitudinal vorticity in the tran-
sitional region is shown in Figure XII-9 in Lesieur ([170], p. 400). During the
transition, these rolls evolve into a staggered pattern that breaks down into
turbulence. Meanwhile, the longitudinal velocity develops weak streaks close
to the wall, as shown in Figure XII-10 in Lesieur ([170], p. 401). These streaks
are the seed of stronger low- and high-speed streaks in the developed region.
We reproduce in Figure 7.16 (taken from Ducros et al. [81]; see also Lesieur
[170]) a view of a very strong hairpin ejected away from the wall just at the
beginning of the developed turbulent region. The numbers on the x-axis cor-
respond to the downstream distance in units of §;, the upstream displacement
thickness. Downstream, there are several series of hairpins ejected above the
low-speed streaks. However, the resolution close to the wall is insufficient
(first point at y* = 5-6) to allow for good predictions of average quantities
such as the friction coefficient at the wall or the shape factor. An interesting
feature of the hairpin shown in the figure is the following asymmetry: Vortex
lines are much more condensed in the right leg than in the left one, and, as

5 Here we refer to a boundary layer without a longitudinal pressure gradient.
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Figure 7.16. LES of the spatial boundary layer at Mach 0.5 showing vortex lines and low
pressure characterizing a hairpin vortex ejected from the wall at the beginning of the developed
region.

a consequence, only the right leg induces a marked pressure trough. As far
as the vorticity is concerned, this right leg forms in fact a quasi-longitudinal
vortex close to the wall that rises above owing to self-induction, forming a
semiarch. Similar traveling quasi-longitudinal vortices will be visualized in
animations of a channel later in the chapter (see section 7.3.2).

Although it gives interesting qualitative information on the structure of
turbulent boundary layers, the LES just described does not have a sufficient
resolution close to the wall, as just mentioned. Here, we present new results
with a finer resolution at the wall (y™ = 1 or 2), at a lower Mach number at
infinity (0.3). It is known that transition in the boundary layer on a flat plate de-
pends on the type of perturbations exerted upstream on the flow (see Lesieur
[170]). In Klebanoff et al. [143], the boundary layer was forced upstream
with a thin metal ribbon parallel to the wall and stretched in the spanwise
direction, which vibrates two dimensionally close to the wall. In this exper-
iment, the three-dimensional forcing (obtained with the aid of tape fixed on
the wall and regularly spaced in the spanwise direction) was harmonic. This
corresponds to what is referred to as the K-mode, where the crests of the
TS waves oscillate in phase in the spanwise direction. In contrast, if the per-
turbation is subharmonic, the crests oscillate out of phase. This is called the
H-mode, from Herbert ([121]; see also Kachanov and Levchenko [139]), and
it corresponds to a staggered organization of vortex filaments. Herbert could
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Figure 7.17. LES of a spatial boundary layer at Mach 0.3; top and bottom panels show K- and
H-transition respectively; the I.h.s. and r.h.s. correspond, respectively, to velocity and vorticity
fluctuation components (dark, positive; light gray, negative); dark gray marks isosurfaces of
positive Q. (Courtesy E. Briand.)

show for the temporal problem® that the staggered mode was more amplified
than the aligned mode. In fact, Ducros et al. [81] observed a transition of the
subharmonic type.

We present now the LES of the Mach 0.3 spatially developing boundary
layer over a flat plate carried out by Briand [31]. It is started here with a
different set of nonlinear parabolized stability expansion (PSE) calculations
from Bertolotti and Herbert [24] and Herbert [122] (see also Airiau [5]). To
this upstream state (with Res, = 1,000), one superposes a three-dimensional
white noise of amplitude 0.2, the amplitude of the PSE perturbation. The
following discussion is usefully complemented by Animations 7-1 and 7-2
on the CD-ROM. In the K-mode case, one sees formation in the transitional
region of large, longitudinal, A-shaped vortices lying on the wall that are in
phase in the flow direction (see Figure 7.17, top). In the H-mode case, the
vortices are staggered (see Figure 7.17, bottom). The figures show at the end
of transition the longitudinal components of velocity and vorticity and also
positive Q. One sees that the A vortices are very well correlated with a system
of induced high- and low-speed streaks.” Notice also on the vorticity plots

¢ In Herbert’s analysis a secondary-instability analysis is used where a three-dimensional
perturbation is superposed on a TS wave of finite amplitude.
7 This is not apparent on the figure for the H-mode case owing to an ill-chosen threshold.
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Figure 7.18. LES of a spatial boundary layer at Mach 0.3. Friction coefficients are plotted
against downstream distance and are compared with theoretical predictions of Van Driest and
Barenblatt and Protokishin. (Courtesy E. Briand.)

that the big As induce “antivorticity” close to the wall owing to the zero
velocity condition at the wall.® Downstream of ~24406;, the streaks become
purely longitudinal. This is accompanied by the fast shedding of small arch
vortices ejected from the tip of the As, as indicated by Q isosurfaces.

Figure 7.18 shows for the K-transition the downstream evolution of the
friction coefficient at the wall in comparison with the theoretical predictions of
Van Driest (discussed in Cousteix [56]) and Barenblatt and Prostokishin [13].
One sees a good agreement of the LES with these predictions with a resolution
of y™ = 1 improving the result. It is even better in the H-mode case. The peak
in the friction coefficient is at 4906;, which is much farther downstream than
the change of regime of the velocity streaks, and might be associated with an
event such as the localized creation of a big hairpin vortex observed in the
simulations of Ducros et al. [81] and presented in Figure 7.16. Figure 7.19
shows for the K-mode case (but results are very similar in the H-mode case)
the rms longitudinal velocity component u’ at a downstream distance such
that Res, = 1,670, compared with Spalart’s [273] DNS at Reynolds numbers
of 1,000 and 2,000. Again, the agreement is good, since the results lie between
Spalart’s predictions. Animation 7-1 concerns both transition and developed
turbulence with the K-forcing. It shows first isosurfaces of u’, w/, and

8 Indeed, a vortex approaching a wall will create under it a velocity gradient at the wall of
vorticity having a sign opposite to the vortex’s vorticity. But this vorticity may be too weak to
induce rotation of the fluid around it, in such a way that antivorticity is not always organized
into a coherent vortex.
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Figure 7.19. Spatial boundary layer at Mach 0.3 comparing the rms velocity fluctuations with
Spalart’s DNS. (Courtesy E. Briand.)

during transition and confirms the passage of the powerful A vortices lying
on the wall. As already stressed, these induce high- and low-speed velocity
streaks and positive antivorticity. They also induce regions of high spanwise
vorticity w, (and hence high friction), which should be correlated with high-
speed streaks. Later, in the region of developed turbulence, the movie shows
the travel of velocity streaks and then of low-pressure isosurfaces. Above the
low-speed streaks, structures are ejected, and these might well be the footprint
of ejected hairpins. The low-pressure animation shows only the head of these
hairpins. In fact, there are several hairpins above a single low-speed streak,
as was already observed in Ducros et al. [81]. In this respect, we no longer
have the perfect correlation between hairpins and streaks that we observed
during the transitional stage. It is therefore difficult in the developed region
to associate the streaks to a system of purely longitudinal vortices at the wall.
Animation 7-2 shows isosurfaces of u’ and Q for K- and H-forcings. For
K-transition, two values of the O threshold are compared (0.01 and 0.02) close
to the tip of the big A vortex. It is interesting that the larger value allows us
to display along the A legs a new hierarchy of arch vortices that are smaller
in size than those ejected from the A tip. Then the movie presents u#” and Q
in the developed region from a frame moving with a velocity of 0.6U.,. The
various structures are approximately stationary, which tends to indicate that



LES OF COMPRESSIBLE TURBULENCE 155

Figure 7.20. Sketch of the computational domain. (Courtesy
Y. Dubief.)

they travel at a velocity of this order in the fixed frame. The rest of the movie
concerns models of wave packets and will not be commented upon here (see
Briand [31] for details).

7.3.2 Boundary layer on spanwise cavities

Deep cavity
We first look at the effect of a spanwise cavity (whose dimensions are typically
of the order of the boundary layer thickness) on the vortical structure of a
turbulent boundary layer. Such a configuration has recently generated renewed
interest in the field of turbulence control (Choi and Fujisawa [39], Pearson
et al. [232]). The cavity belongs to the category of passive devices able to
manipulate skin friction in turbulent boundary layer flow. Depending on its
dimensions, the drag downstream of the cavity can be increased or decreased.
To investigate the effects of a spanwise cavity on the near-wall structure
of turbulent boundary layer flows, Dubief and Comte [76] (see also Lesieur
et al. [172]) have performed a spatial numerical simulation of the flow over
a flat plate with a spanwise square cavity embbeded in it. The goal here is to
show the ability of LES to handle more complex geometries. The numerical
code used is an evolution of the compressible Navier—Stokes solver COM-
PRESS, already discussed. The new version of the code, WOMBAT, written
by Dubief [78], is multidomain, ensuring also spatial fourth-order accuracy
at the domain borders. The subgrid model used is the FSF model but now in a
four-point formulation in planes parallel to the wall. Periodicity is assumed in
the spanwise direction. The computational domain, sketched in Figure 7.20,
is here decomposed into three blocks. The Mach number at infinity is 0.5. The
large dimension of the upstream domain is required for a proper generation
of the inlet condition. The coordinate origin is located at the upstream edge
of the cavity. The inlet, cavity, and downstream flat plate blocks have reso-
lutions of, respectively, 101 x 51 x 40, 41 x 101 x 40, and 121 x 51 x 40.
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Figure 7.21. Mach 0.5 cavity showing the longitudi-
] nal evolution of the skin friction coefficient normalized
by its smooth wall value. (Courtesy Y. Dubief.)

The minimal grid spacing at the wall in the vertical direction corresponds to
Ayt = 1 in terms of inlet boundary layer units. The streamwise grid spacing
goes from Ax™ = 3.2 near the cavity edges to 20 at the outlet. The spanwise
resolution is Azt = 16. The Reynolds number of the flow (based on d = §,
the boundary layer thickness) is 5,100, which is similar to the intermediate
simulation of Spalart [273] at Ry = 670. The inflow is generated using the
aforementioned method of Lund et al. [192], which we will describe in more
detail. This method is based on the similarity properties of canonical
turbulent boundary layers. At each time step, the mean and fluctuating
velocities, temperatures, and pressures are extracted from a plane, called
the recycling plane, and renormalized at an appropriate inlet scaling. The
method is based on the inner and outer scaling laws, where the variables
scale with (v,, v) and (v,, §), respectively. The statistics found are in good
agreement with Spalart’s data. Figure 7.21 shows the distribution of the skin-
friction coefficient C¢ normalized by its smooth wall value on the downstream
flat plate. Immediately downstream of the cavity the skin friction coefficient
experiences a sharp rise, followed by a small undershoot below the upstream
value. Then it rises again. It eventually relaxes toward its smooth wall value
in an oscillatory manner. This behavior is consistent with previous exper-
imental results of Pearson et al. [232] with a smaller d/§ ratio. The local
drag reduction observed in the present simulations is smaller than that ob-
tained by these authors, probably because of a larger size of the cavity in
our case. The large magnitude of the skin friction at the edge is obviously
caused by the hairpin-type vortices, generated in the upstream boundary
layer, that travel above the cavity and impinge on its downstream ridge, as
coherent-vortex analysis presented in the following will show. Spanwise cor-
relations of u, v, and w (not shown here) indicate a slight change in the
streak spanwise wavelength. In the buffer layer, whereas negative u correla-
tion peaks at z* = 50 in the upstream boundary layer (giving the right streak
spacing A} = 100), the spanwise wavelength is reduced downstream of the
cavity to A7 = 70. Figure 7.22 shows an instantaneous visualization of u
fluctation isosurfaces. The vertical extent of low-speed streaks is increased
as they pass over the cavity. The vorticity field is plotted using isosurfaces of
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Figure 7.22. Mach 0.5 cavity showing isosurfaces of streamwise velocity fluctuations. Black,
u' = —0.17Up; white, v’ = +0.17Up. (Courtesy Y. Dubief.)

the vorticity norm conditioned by positive O (Figure 7.23). Upstream, the
quasi-longitudinal vortices creep up the wall and rise just like those present
in the boundary layer on the flat plate studied earlier. Their length is of the
order of 300 wall units, as in the experiments in turbulent boundary layers [8].
The structures downstream of the cavity are smaller and less elongated in the
streamwise direction. It was checked that the statistics here show some sort
of return to isotropy (see Dubief [77]) in terms of the famous Lumley map in
the plane of components /// and —/1, the third and second invariants of the
anisotropy tensor associated with the Reynolds-stress tensor (Lumley [190],
Lumley and Newman [191]). Figure 7.24 gives a view of the flow within the
cavity (where the upstream vertical wall is removed). Vortices aligned in the
y direction can be isolated in the upstream part of the cavity. The curvature
of the core of these vortices corresponds to the local curvature of the recir-
culating flow, and they may be due to Gortler instability. The flow inside the
cavity is highly unsteady, and there is obviously a high level of communication
between the recirculating vortex and the turbulent boundary layer.

We show now the LES of a flow at Mach 0.1 in a boundary layer on a flat
plate passing over a square cavity deeper than the former one (Lesieur et al.
[176]). Here, compressibility effects are negligible. The spanwise extent of the
cavity is still 2d, and periodicity is again assumed in the spanwise direction.

Figure 7.23. Mach 0.5 cavity showing isosurfaces of the vorticity norm filtered by positive Q.
(Courtesy Y. Dubief.)
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Figure 7.24. Mach 0.5 cavity showing vorticity norm filtered by positive Q inside the cavity.
(Courtesy Y. Dubief.)

The Reynolds number is based on the velocity at infinity U, and the cavity
depth d is 270,000. The total number of grid points is 688,000. The grid is
refined close to the wall and in the region of strong shear between the edges.
The upstream condition is less sophisticated than for the cavity just presented
because it consists of the mean velocity of a turbulent boundary layer on a
flat plate given by a power law of the form u/ U, = (y/8)"/7 proposed by
Schlichting [257] with § = 0.4d. The total stress 7y is defined by Blasius’s

empirical relation
1

To Vv 4
— = 0.0225 (—) , (7.50)
pU; Uyd

allowing us to define the friction velocity. A white noise of 5% intensity is
superposed on this profile close to the wall. Figure 7.25 (bottom left) presents
a vertical section of the vorticity norm. The pressure signal on a line y = 0,
(i.e., the upstream and downstream walls and the line joining the two edges of
the cavity) is shown in Figure 7.25 (top left). A three-dimensional plot of Q is
presented in Figure 7.25 (top right) with a zoom in Figure 7.25 (bottom right).
These figures indicate the passage of KH-type vortices shed behind the first
backstep and impinging on the second edge of the cavity. The pressure signal at
the wall has a high frequency associated with these vortices and a much lower
one that might be due to the recirculation of the flow within the cavity. The
vortices shed behind the first edge are quasi-two-dimensional, and, because
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Figure 7.25. Mach 0.1 cavity. (Top left) Pressure at the wall; (bottom left) vertical section of
vorticity norm; (top right) three-dimensional map of Q; (bottom right) zoom of Q in the cavity.

the length to travel is short, they do not have time to three-dimensionalize
significantly. Then they impinge on the second edge and transform into large,
very coherent A vortices, which become arches by raising their tips via self-
induction. When looking at Q plots inside the cavity, we see on the top KH
vortices passing by, whereas the recirculation in the cavity produces numer-
ous longitudinal vortices, as in the former cavity presented. These longitudinal
structures have also been observed experimentally in [198]. In fact the two
cavities presented at Mach 0.5 and Mach 0.1 are very similar in structure
within the cavity and downstream. Such numerical and experimental funda-
mental studies are extremely important for the automobile industry in terms
of aeroacoustic applications. Indeed, they enable designers to relate precisely
emitted aerodynamic noise’ to the dynamics of coherent vortices and to define
appropriate noise-control strategies in terms of vortex manipulation. We recall
that coherent vortices are low-pressure regions and hence potential sources
of acoustic waves (which are pressure waves). Let us mention finally the LES
of a flow within a cavity carried out by Zang et al. [297] using the dynamic
mixed model. In this simulation, the flow is forced above by a moving lid, and
good experimental agreement is obtained.

Spanwise groove

We briefly review now a LES of a flow in a plane channel at Mach 0.3 carried
out by Dubief [77] (see also Dubief and Delcayre [78]). One side of the
channel is flat, and the other is equipped with two small, spanwise, square
grooves of size 40 flat-wall units. Periodicity is assumed in the streamwise

% The frequency spectrum of the acoustic power may easily be determined from the pressure
spectrum (see, e.g., Mankbadi [195]).
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Figure 7.26. Positive Q isosurfaces on the flat plate of a Mach 0.3 periodic channel equipped
with small spanwise grooves on the other side. (From Dubief and Delcayre [78]; courtesy Y.
Dubief and Journal of Turbulence.)

and spanwise directions. The Reynolds number 4™ on the flat plate is 160,
and the orthogonal grid is stretched in the streamwise and spanwise directions
with a minimum grid spacing (in flat-wall units) of, respectively, 2 and 0.4
in these two directions. Hence, this is a very well resolved simulation close
to the wall. The number of grid points is 200 x 128 x 64. At this low Mach
number, compressibility effects are negligible, and it was checked by Dubief
[77] that the flat-wall velocity statistics were in very good agreement with
Lamballais’s [151] DNS results in an incompressible channel between two
flat walls at the same Reynolds number 2% = 160. Lamballais’s DNS studies
were carried out with a very precise code, combining pseudo-spectral methods
in the directions of periodicity and compact finite differences of sixth order
in the direction perpendicular to the wall (see Chapter 5). The accuracy of
his code has been checked to be close to spectral in such a case by extremely
good comparisons with purely spectral DNSs (see Chapter 5). This constitutes
an excellent validation for the compressible LES code, which involves about
1.6 million grid points, and is not very expensive. In fact, the LESs of a grooved
channel show that the boundary layer on a grooved wall is slightly affected (see
Dubief [77] for more details). Animations of Q on the flat and grooved walls
presented on the CD-ROM (Animation 7-3) as well as in Dubief and Delcayre
[78] permit numerous “semi hairpins” traveling downstream to follow. Their
legs form quasi-longitudinal vortices close to the wall of approximate length
300 wall units, and many of them have a self-induced, raised-arch-form tip.
Figure 7.26 shows such a field on the flat side of the channel. Animation 7-3
gives more detailed information on Q isosurfaces and w, isolines at the walls
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Figure 7.27. Rectangular obstacle with a wall effect.

with perspective and top views of the flow close to the flat and ribbed walls.
For the spatial boundary layers previously presented, high values of w, at the
wall (in red) correspond to regions of high friction and should be correlated
with the high-speed streaks.

Briand [31] has identified the same type of vortices in the LES of a spa-
tially developing turbulent boundary layer at Mach 0.3 already presented and
has checked that they travel at the mean-flow velocity corresponding to the
location of their tip, which is in agreement with the experimental observa-
tions of Stanislas [275] and Adrian and collaborators [45]. Let us mention
finally the numerous experimental and numerical results on boundary layers
and channel-flow structure provided in the very well documented book of
Bernard and Wallace [22].

7.3.3 Obstacle with a wall effect

We present now LES of a weakly compressible flow at Mach 0.2 around
a two-dimensional (infinite in the spanwise direction) rectangular obstacle
of thickness H and length 10H that lies parallel to a wall and is located at
a height of 0.2 H above it. This work is reported in Lesieur et al. [176]. Pe-
riodicity is assumed in the spanwise direction. The Reynolds number based
on the velocity at infinity Uy and H is 165,000. The geometric configuration
is presented in Figure 7.27 with flow going from left to right. The spanwise
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Figure 7.28. Positive Q isosurfaces around a rectangular flat plate with a wall effect. Positive
and negative longitudinal vorticity is also shown. (Courtesy P. Begou.)

width of the domain is 3 /. The upstream velocity is identical to the case of
the large, two-dimensional square cavity already studied with § = 0.1H. A
grid of 1,542,000 points split into four subdomains is used with the first point
above the upper wall being located at a distance of 15 wall units. Figure 7.28
and Animation 7-4 show the main features of this complex flow very well.
Upstream, most of the fluid rises against the step, except for a small fraction
that passes in the channel between the wall and the obstacle. Then the flow de-
taches above the forward ridge, forming an unstable vortex sheet that rolls up
into two-dimensional KH vortices, which are then shed and seem to be desta-
bilized under the action of pairs of hairpin vortices impinging on the rising
step. The flow reattaches on the upper wall, whereas KH vortices transform
into arch vortices similar to those already obtained in various situations in
which detachment and reattachment are involved. These arch vortices detach
behind the rear backward-facing step. The flow in this region is interesting
because a rising current coming from the local recirculating bubble hits the
current passing under the obstacle. Further downstream, the arch vortices
weaken substantially while exiting the domain.

Animation 7-4 presents isosurfaces of positive Q in green, positive lon-
gitudinal vorticity in red, and negative longitudinal vorticity in blue as the
viewer rotates with respect to the flow. Initially, the flow goes from left to
right, then one sees it in perspective from upstream, and finally it goes from
right to left.
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Figure 7.29. Dennis Conner’s Stars and Stripes training in San Diego. (Courtesy C. Agnus and
J. Lesieur (LExpress) and Grenoble-Sciences [167].)

7.3.4 Pipe flow

There is currently much less LES work done on pipes than on plane channels
because pipes are more complex geometrically. We briefly discuss here the
work of Nicoud and Ducros [219] using unstructured grids. The Reynolds
number based on the diameter 2R and the bulk velocity (see exact definition
to follow) is 10,000 (with R* = 320), and the Mach number is 0.25. Nicoud
and Ducros use the so-called wall-adapting local eddy viscosity (WALE)
subgrid model (see their paper for more details), where the eddy viscosity has
the correct scaling O(3?) close to the wall. In a former work, Ducros et al.
[82] applied the filtered Smagorinsky model'? to the pipe. Both studies show
good results in terms of statistics. They also display the same low-and high-
speed streaks and quasi-longitudinal vortices as found in boundary layers and
channels on a flat plate.

7.4 Drag reduction by riblets

Let us briefly recall the numerous studies associated with passive turbulence
control by longitudinal riblets put on some parts of planes, boats, and more
recently on competition swimsuits made of so-called sharkskin. Just before
Dennis Conner won the 1986 final of the America’s Cup against the Aus-
tralians (see Figure 7.29), he spoke of a secret weapon he had, and his boat

10 This is the equivalent of the FSF model [81] for the Smagorinsky model.
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Stars and Stripes was hidden from the public. After the victory, he revealed
that riblets had been installed on the hull of the boat. This made headlines
in newspapers worldwide. Meanwhile, defense agencies in several countries
were sponsoring classified research on riblets and were testing riblet-equipped
planes.

The optimal spanwise wavelength of triangular riblets was empirically
found to be A7 = 10-20, which is approximately 10> m in air and 10~* m
in water. This determination requires knowledge of the ratio v,./ Uy in terms of
the Reynolds number, for which empirical laws exist. In fact, the DNS studies
of Choi et al. [40] using equilateral triangles have shed new light on the
role of quasi-longitudinal vortices in drag reduction by riblets. Indeed, the
longitudinal vortex diameteris ™ ~ 25. Choi etal.’s simulations show that for
17 larger than 25 (they took 40), the quasi-longitudinal vortices are trapped in
the valleys of the riblets, which increases the drag. However, in the simulation
with 1 = 20, the longitudinal vortices sit above the riblets’ peak, and the
drag is decreased. This may be interpreted in the first case (A} = 40) by an
increased effective (in terms of drag reduction) contact area of the fluid with
the wall. In the second case (A = 20), the effective contact area is reduced.

A very important question for aeronautic applications concerns the influ-
ence of compressibility in a perfect gas for riblet efficiency. Because riblet
size scales in the incompressible case with wall units, it is interesting first
to ask how the spanwise wavelength of streaks and the vortex diameter (re-
spectively, 100 and 25 viscous units) are modified by compressibility. In fact
two DNSs of a compressible flat-wall channel at Mach 1.5 and a Reynolds
number of 3,000 have been carried out by Coleman et al. [48] (using spectral
methods) and Lechner et al. [160] (using high-order finite differences). In
these compressible channel calculations, the bulk density p, and velocity Uy,
are defined by

+h

+h
2hpy = / (pVdy, 2hpuUs = / (pu)dy. (7.51)
—h —h

These calculations are carried out at fixed bulk density and wall tempera-
ture 7y, whatever the Mach number. The latter is defined as U, /cy,, where
cw = /Y RTy is the sound speed at the wall. The Reynolds number is
opUph /1y, where .y, is the dynamic viscosity at the wall. For each U, the
simulation is done at constant mass flux to generate a turbulent state rapidly.
The velocity gradients within the channel produce a heating by molecular
diffusion, and the channel interior becomes warmer than the walls. Coleman
et al. [48] and Lechner et al. [160] show that, when turbulence has developed,
the average temperature (resp. density) remains approximately uniform in the
major part of the channel but decreases (resp. rising) close to the walls. The
inner plateau part of the density is very slightly less than py. The low- and
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high-speed streaks are more elongated, but their spanwise size in physical
units (not wall units) remains unchanged. Vortices are also very similar to the
plots of Figure 7.26.

Let us consider now how some statistics of the flow are modified by com-
pressibility. Let py, be the average density on the wall. We recall that the wall
unit is given by

Vw Hw  HwUx

L, =— = , (7.52)
Vs Pw Vs Tw
where
Ty = P> = 8—”| (7.53)
w = PwlU, = dey w .
is the stress at the wall. This leads to
I, = B (7.54)
VPwTw

Because 1 depends only on temperature,'! i, will be time invariant. How-
ever, recent LESs of the same problem using the SSF model and well-validated
immersed-boundary methods have been carried out by Hauét [ 118], who found
that the stress at the wall ty, is approximately unchanged up to Mach 1.5. As-
suming this constant stress gives /, & py /2 Because pw increases with Mach
number, /, will decrease. This fact has been checked in the aforementioned
simulations in which 2" does increase with the Mach number. Looking at the
spanwise autocorrelation of the longitudinal velocity, Hauét [118] finds that
spanwise wavelength (in physical units) of the streaks is increased by approx-
imately 40% with respect to a Mach 0.33 simulation, which is at variance
with the conclusions of Coleman et al. [48] and Lechner et al. [160]. More
research is needed to clarify this point, for immersed-boundary techniques
are quite questionable owing to uncertainties associated with the velocity of
fictitious flows contained within obstacles. Further uncertainties exist in the
compressible case. However, Hauét’s code has been validated by simulating
properly a laminar flow around an infinitely thin heated plate located at the
center of a channel.

Hauét [118] has also developed a LES of a compressible channel, one
side of which is equipped with longitudinal, triangular riblets. Two riblets
were studied: the “high” one, with height and width (at Mach 0.33), respec-
tively, of 11 and 22 wall units, and the “great” one, with height and width
(at Mach 0.33), respectively, of 22 and 44 wall units. Hauét has first vali-
dated satisfactorily at low Mach the numerical code used against Choi et al.’s

! The dependence is through either the Sutherland law or the o< 7%7 law taken by Coleman
et al. [48] and Lechner et al. [160].
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Figure 7.30. Cross section of the velocity in a channel above riblets at Mach 0.33. ( Top) “High”
riblet; (bottom) “great” riblet. (Courtesy G. Hauét.)

DNS. The physical size of each system of riblets was unchanged when go-
ing from Mach 0.33 to Mach 1.5. In these simulations, the high riblet turns
out to reduce the drag (5% for the mean friction coefficient at Mach 1.5,
versus ~3% at Mach 0.33). The “great” one increases it. Hauét [118] re-
covers the same vortex phenomenology as Choi et al. [40], with longitudinal
vortices above the riblet tips in the high-riblet case and inside the valleys in
the great-riblet case. This is confirmed by Animations 7-5 and 7-6, which
present longitudinal vorticity in Hauét’s high and great riblets at Mach 0.33.
Figure 7.30 shows an instantaneous projection of the velocity vector in a
cross section for the two riblets. It is clear from these plots that alternate vor-
tices lie within the valleys for the great riblet, whereas thinner longitudinal
vortices stay above the peaks for the high riblet. Corresponding animations
of cross sections of low- and high-speed streaks by a plane located 10 wall
units away from the riblet peaks are also presented on the CD-ROM (Anima-
tions 7-7 and 7-8). The straight lines indicate positions of riblet valleys. The
streaks are much more coherent longitudinally for the high riblet than for the
great one.

If, in a free, compressible boundary layer, the optimal physical size of rib-
lets does not vary from subsonic to supersonic regimes, then an airplane with
the same riblet system will be able to reduce drag at all speeds. Similar con-
clusions have been drawn from experiments carried out at ONERA-Toulouse
by Coustols and Cousteix [57]. This is quite satisfactory from the point of
view of aircraft designers.
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Figure 7.31. Perspective side view of positive Q isosurfaces in a transonic flow on a rectan-
gular cavity. (From Dubief and Delcayre [78]; courtesy Y. Dubief.)

7.5 Transonic flow past a rectangular cavity

We show now the LES results of a flow at Mach 0.91 past a rectangular-
parallelepiped cavity, also presented in Dubief and Delcayre [78]. The flow
corresponds to an experiment of Tracy and Plentovich [281]. Let H be the
cavity depth. The Reynolds number based on the free-stream velocity and H
is equal to 1.25 x 10, and the 99% boundary layer thickness upstream of the
cavity is 0.3 H. The inflow is a mean profile perturbed by three-dimensional
white noise. The resolution is coarse because the first point away from the
wall is at a distance of 70 upstream wall units. More specifically, there are
50 x 30 x 30 points inside the cavity, and 100 x 40 x 70 above. No wall law
isused. The Q-criterion has also been applied in this case: Animation 7-9 (pre-
sented on the CD-ROM and in Dubief and Delcayre [78]) shows how large A
vortices shed behind the upstream backstep travel with the mean flow, impinge
on the ridge of the upstep, and are carried away downstream. This is clear from
Figure 7.31 (taken from Dubief [77]). There is also an important recirculation
in the rear part of the cavity. Although the upstream turbulent boundary layer
is not properly described, pressure spectra accurately predict the fundamen-
tal frequency of the vortex shedding. Two other low frequencies have also
been identified and are in good agreement with the experiment of Tracy and
Plentovich [281] within the convergence error of the spectra for the lowest
frequency. The level of acoustic noise emitted above the cavity in the compu-
tation of Dubief is overestimated by 10-20 dB because of the confinement of
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Figure 7.32. View of a preliminary model of Hermeés. (Courtesy Dassault and Grenoble-
Sciences [167].)

the domain and open boundary conditions. A last question that arises here con-
cerns the validity of the O-criterion for strongly compressible flows. Although
theoretical considerations justifying this criterion (in terms of local pressure
minima at least) assume incompressibility, it seems here, from the good agree-
ment with experiments as far as Strouhal numbers of the shed Q vortices are
concerned, that the criterion still works. The Q-criterion has also been applied
with success by Lechner et al. [160] for the previously mentioned Mach 1.5
channel DNS.

7.6 European space shuttle Hermes

Let us present a LES done by David [62] of the detached boundary layer over
a curved compression ramp at Mach 2.5 modeling the wind-side region of
the body flap of the European space shuttle Hermes (see Figure 7.32) dur-
ing its projected reentry.!> The external Mach number relevant to the shuttle
is about 10 (at altitude 50 km, incidence angle 30°, and flap extension an-
gle p = 20°). The whole computational domain is contained within the bow
shock. The grid used is shown, upside down, in Figure 7.33. The resolution is

12 Since then, the Hermés project has unfortunately been canceled because of budget cuts to
the program.
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11 12 13 14 15

Figure 7.33. Transverse section of the 220- x 140- x 25-point grid used for the simulation of
the transition on the curved ramp (angle 20°). The axes are graded in meters counted from the
nose of the full-size shuttle. The spanwise size of the domain is 4.5 times the displacement
thickness §; of the upstream boundary.

220 x 140 x 25 = 770,000 grid points. The first part of the boundary (up to
13.6 m away from the nose) is curved. It corresponds to the wind side of the
body. The ramp is the body flap, which is assumed to be flat. For computational
reasons, it is extended by a fictitious horizontal surface introducing a cutoff
with the lee side of the flap and the afterbody. This enables the prescription
of well-posed boundary conditions at the exit of the domain. The simulation
requires knowledge of the density, temperature, and velocity profiles at the
upstream boundary of the domain. Because these are not available for in-
flight conditions, we simulate a well-documented 1/90 experiment performed
at ONERA in the wind tunnel R3CH. Our upstream condition results from
the experimental profiles plotted in Figure 7.34 with white noise of amplitude
(2 x 1073) Uy, superimposed on the three components of the velocity at each
time step. On the model, the wall temperature is 7,, = 290 K, and the “exter-
nal” (outside of the boundary layer but inside the bow shock) temperature is
T = 460 K. Let us recall the adiabatic temperature 7, given in Chapter 1 by
Eq. (1.17) defined as the temperature reached at the wall (where the velocity is
zero) by a fluid parcel traveling adiabatically from the exterior of the boundary
layer (for a time-independent perfect fluid). Equation (1.17) can be written as

T, =T, (1 n VT_I Mgo) . (7.55)
We have T, = 1,035 K for My, = 2.5 and y = 1.4, yielding T,/ T, = 0.28.
The ramp is therefore very cool with respect to the ambient fluid, which
models the radiative balance of the true shuttle during its reentry.

The measured upstream displacement thickness of the boundary layer is
8i = 0.21 x 1073 m, yielding a Reynolds number Re;, = 727. This is too
high for the code described here. The simulation is therefore performed at the
maximal Reynolds number permitted by our resolution, which is Res, = 280.
For this reason, the results presented in the following have to be considered
as qualitative only. One should also bear in mind that the similitude between
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Figure 7.34. Profiles prescribed at the upstream boundary (Mach number and normalized
density p/p ON top; streamwise and transverse normalized velocity components u/U. and
v/Us and normalized temperature T/ T, at the bottom). For all plots, the vertical co-ordinate is
£5/8;. For the 1/90 experiment, po, = 7.685 x 1072 kg/m?3, Uy, = 1,089 m/s, and T, = 460.3 K.

the experiment and the in-flight conditions cannot be exact. If the Mach and
Stanton numbers are in similitude, it is extremely unlikely that the Reynolds
numbers also are. Figure 7.35 shows the detachment of the boundary layer
and its reattachment to the flap obtained from a preliminary two-dimensional
simulation. One sees clearly the multiple-legged A shock focalizing outside
of the domain. Its position fluctuates in time, owing to the large vortices
in the recirculation zone around the hinge. However, the most interesting
feature of the flow is not reproduced in this two-dimensional simulation:
Between its detachment and reattachment, the boundary layer undergoes a
certain curvature, whose radius R can be roughly estimated from Figure 7.35.
This yields a Gortler number

8i
g= Regi\/; ~ 2-3, (7.56)
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Figure 7.35. Instantaneous temperature map obtained from a preliminary two-dimensional
simulation of the flow over a curved ramp. Here again, the axes correspond to the full-size
shuttle, whereas it is the 1/90 experiment that is actually simulated.

which is high enough to give rise to centrifugal instability according to linear
stability theory. Experimental evidence of streamwise counterrotating Gortler
vortices in a similar case was produced by Settles et al. [261], but the conse-
quence of these vortices on the wall heat flux has remained an open question.
Figure 7.36 shows such Gortler vortices obtained from the three-dimensional
LES performed by David [61] using the SSF model in a domain of spanwise
extension equal to 4.55;. One clearly sees two large structures, crosscuts of
which show that each of them corresponds to a pair of counterrotating Gortler
vortices. These crosscuts in a plane perpendicular to the flap and located

Norm of vorticity colorized with temp. fluct.

Figure 7.36. Ramp flow. Close-up of the hinge and body-flap region showing an isosurface of
the vorticity magnitude. This surface is shadowed by temperature. (Courtesy E. David [61] and
Grenoble-Sciences [167].)
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Figure 7.37. Ramp flow. Spanwise slice of instantaneous (from top to bottom) vorticity mod-
ulus, longitudinal vorticity, pressure, temperature, and temperature fluctuations. Dashed lines
correspond to negative values. Graduations are again relevant to the full-size shuttle.

approximately 15 m downstream of the nose are presented in Figure 7.37,
which displays the instantaneous vorticity modulus, longitudinal vorticity,
pressure, temperature, and temperature fluctuations with respect to a span-
wise average. In this figure, the slice is repeated twice in the spanwise direc-
tions. This is permitted by the periodic boundary conditions and makes the
vortex structure easier to understand. The longitudinal vorticity plot shows
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that the big vorticity dipole located between the spanwise locations & = 0
and & = 0.2 m (coordinates relevant to the full-size shuttle; they have to be
divided by 90 to correspond to what is actually simulated, i.e., the model) is
made of one cyclonic (anticlockwise) vortex, one longitudinal vortex between
0 and 0.1, and one anticyclonic (clockwise) vortex between 0.1 and slightly
less than 0.2. Under the latter, a flat region of antivorticity forms at the wall.
The second dipole is smaller. Interestingly, its cyclonic branch consists of two
small vortices that seem to pair. Under the anticyclonic branch, antivorticity
exists also. There is a very good correlation between the vorticity and tem-
perature structures. A first remark is that the flow close to the wall is very hot
with temperatures that may reach 730 K (i.e., 70% of the adiabatic temper-
ature) at a spanwise distance &3 slightly larger than 0.4 m (i.e., zero due to
spanwise periodicity). At this point, it is clear that the longitudinal cyclonic
vortex produces a downwashing to the wall of higher external fluid, which was
originally at a temperature of 600 K. During the process, the temperature sig-
nificantly increases as one approaches the wall. In fact, the presence of these
pairs of counterrotating Gortler vortices allows us to understand Figures 7.37
and 7.38. The latter represents the corresponding instantaneous profiles of the
Stanton number S¢ and skin-friction coefficient Cy. Uplift of slow and cold
fluid from the boundary, which occurs in between each pair of counterrotating
vortices, implies negative temperature fluctuations and minima of Cy and St.
The latter are located at &5 = 0.1 m = 0.5 m with a secondary minimum at
0.3 m. Conversely, maximal values of C¢ and St are found at &5 = 0.2 m and
0.4 m, which is half way between the two pairs, where the downwash of hot
(and fast) fluid from the outer part of the layer is maximal. The extreme values
of the temperature fluctuations (with respect to the time average) plotted in
Figure 7.37(e) are £90 K. They are found close to the wall (which is at
Tw = 290 K). These 30% of the temperature fluctuations induce huge fluctu-
ations of the Stanton number (Figure 7.38), between 2 x 1073 and 14 x 1073
with an average of about 6 x 1073, The rms Stanton number is thus 133%.
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Friction Coefficient at the wall | Heat Flux at the wall

Figure 7.39. Instantaneous contours (with elevation) of the skin-friction coefficient Cs (left) and
the Stanton number St (right).

The same trend is observed for the skin-friction coefficient Cy displayed in
Figure 7.38, which remains approximately proportional to St as predicted
by the strong Reynolds analogy. An analogy factor § = St/2Cr ~ 2.9 can be
(quite roughly) estimated from the mean values of St and Cy. In trying to work
out analogy factors associated with the peak and valleys of Cr and Sz, one
finds spax = 1.1 and sy, —> 00, respectively (because Cr goes to zero). This
clearly shows that the strong Reynolds analogy, although globally satisfied,
cannot be relied upon to deduce local Stanton numbers out of local values of
the skin-friction coefficient. Finally, the elevated contour maps of Cy and St
shown in Figure 7.39 prove that these values — recorded from an instantaneous
cross section of the flow — are almost independent of the streamwise coor-
dinate &;. Time-averaged plots (not shown here) also prove that the Gortler
vortices are, in this simulation, fairly stable in time. This is likely to enhance
their destructive effects considerably on the material of the body flap. A ques-
tion that will remain a mystery is whether the presence of these vortices on the
real Hermes would really have induced temperature fluctuations capable of
destroying the rear flap. These results are quite pessimistic in this context. In-
deed, Eq. (7.55) shows that T,/ T, = 2.25 for M, = 2.5. If one admits that
in reality the maximum temperature at the wall will be ~0.77, = 1.57 T,
and if one takes 7, = 3,000 K, the flap would be in contact with fluid at
temperatures of the order of 4,700 K.

A last important remark for modeling strategies is that such vortices are
not predicted by industrial numerical models used for the design.

7.7 Heat exchanges in ducts

For numerous applications, particularly those of engineering interest, it is
important to reach a deeper understanding, and to be better able to predict,
the heat exchanges between a heated wall and the surrounding turbulent flow.
This is relevant if, for example, one wants to improve the performances of
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a heat exchanger or the cooling of a rocket engine.'* For cooling purposes,
the cold fluid often flows in ducts of square or rectangular cross section and
exchanges heat with the hot fluid through one of the walls. Flows in square
and rectangular ducts are characterized by the existence of secondary flows,
called Prandtl’s flow of the second kind, driven by the turbulent motion and
consisting of a mean flow perpendicular to the main flow direction. Their
intensity is 1-3% of the mean streamwise velocity, but their effect on heat
and momentum mixing is quite significant. To reproduce this weak secondary
flow properly with a RANS approach, elaborate second-order models have
to be employed. Furthermore, RANS heavily relies on empirical models to
represent the near-wall dynamic and thermal behavior. We will show here that
LES provides an excellent tool for correctly reproducing the heat exchanges
in closed ducts. The reader will find more details in Métais [207]. The LES
studies presented here use the SSF model.

7.7.1 Straight ducts of square section

We are going to present LES of turbulent flow within a square duct on the basis
of the work of Salinas and co-workers [249-251]. We again use the Grenoble
COMPRESS code. Let Rep, = 6,000 be the Reynolds number based on the
bulk velocity. We consider successively the isothermal case (with the four
walls at the same temperature) and the heated duct (for which the tempera-
ture of one of the walls is set higher than the temperature of the three other
walls). Moderate resolutions are used because the grid has 32 x 50 x 50 nodes
in the isothermal case and 64 x 50 x 50 nodes in the heated case along x
(streamwise), v, and z (transverse) directions. This renders the computation
very economical with respect to a DNS. To correctly simulate the near-wall
regions, a nonuniform (orthogonal) grid with a hyperbolic-tangent stretching
is used in the y and z directions. The minimal spacing near the walls is 1.8
wall units. The Mach number based on the bulk velocity and the wall temper-
ature is M = 0.5. Imposing a uniform temperature at the walls is compatible
with the use of periodic boundary conditions in the streamwise direction,
which simplifies the computation.

Isothermal case

The LES has been validated against the incompressible DNS of Gavrilakis
[107], and very good agreement has been obtained. The secondary flow reveals
the existence of two streamwise, counterrotating vortices in each corner of the
duct. The maximum velocity associated with this flow is 1.169% of the bulk
velocity. This agrees very well with experimental measurements. It shows the

13 The Ariane V Vulcain engine is an example.
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Figure 7.40. Velocity vector in a cross section of an isothermal duct. (a) Instantaneous field;
(b) mean field. (Courtesy C. Salinas-Vazquez)

ability of LES to accurately reproduce statistical quantities. Figures 7.40(a)
and 7.40(b) show a projection of, respectively, the instantaneous and average
flow field in the duct cross section. It clearly indicates a very pronounced flow
variability with an instantaneous field very distinct from the mean field. The
maximum for the transverse fluctuating velocity field is of the order of ten
times the maximum for the corresponding mean velocity field.

Heated wall case

We consider now a square duct subjected to an asymmetric heat flux. Let 7j, be
the temperature of the hot wall. Salinas-Vazquez and Métais ([250, 251]) have
studied the effect of varying the temperature ratio between the hot wall and the
other walls. When the heating was increased, they observed an amplification
of the mechanism of ejection of hot fluid from the heated wall. Figure 7.41
shows velocity and temperature maps near the heated wall (only one portion
of the duct is represented). We can see that these ejections are concentrated
near the middle plane of the heated wall. This yields a strong intensification of
the secondary flow. We can check also that the turbulent intensity is reduced
near the heated wall because of an increase of molecular-viscous dissipation
in that region caused by the strong heating.'*

Let us consider the mean heat flux

qw = [(«)0(T")/dn],,, (7.57)

14 Here, dynamic molecular viscosity u increases as a result of the heating, and density de-
creases; thus, kinematic viscocity v will increase also.
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SECONDARY FLOWS

Figure 7.41. Large-scale motion over
the hot wall in a heated duct (T,,/Tw =
2.5) showing instantaneous velocity vec-
tor in a cross section and isosurface
of temperature (T/T,, = 2.1). (Courtesy
C. Salinas-Vazquez.)
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where 7 is the direction normal to the wall. Brackets stand for averaging in
the flow direction x and in time. We have seen that, near the duct middle
plane, slow and hot fluid is ejected from the wall toward the duct interior. This
induces a strong reduction of the longitudinal velocity gradient 0 U /9dn in that
region in the strongly heated cases and a reduction of the wall shear stress

Ty = [(n)a(U)/dn],, (7.58)

because the velocity-gradient decrease overwhelms the viscosity increase.
Similarly, the temperature gradient normal to the heated wall is significantly
reduced when the heating is strong enough to yield a unique violent ejection
concentrated in the middle of the heated wall (see [251]). Recalling that the
molecular Prandtl number is a constant, we see that the mean heat flux is also
reduced here. Outside the middle plane, the reinforcement of the secondary
flows with heating is accompanied by a stronger impingement of the heated
wall by the fluid coming from the duct core. It generates more significant
velocity gradients and greater wall shear stress at a distance of about 0.2
hydraulic diameters from the lateral wall. This effect is not so clearly marked
for the heat flux, and the heat flux from the hot wall is globally reduced in
the strongly heated case mainly because of the local flux decrease associated
with the central plane ejection.

7.7.2 Ducts with riblets

In a recent study performed by Issa [132], longitudinal ribs were put on the
heated wall to prevent the formation of this ejection and therefore to increase
the heat flux given by Eq. (7.57). Two ribs were placed symmetrically with
respect to the heated wall middle plane, and various shapes of ribs were tested.
Figure 7.42 displays a velocity cross section for the duct both without and with
ribs. Three shapes (called circular, triangular, and square) of ribs are studied.
Recall that heating produces an intensification of the secondary mean flow.
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Figure 7.42. Mean velocity vector projected on a cross section of the duct. (Top left) square
duct without ribs; (top right) square duct with circular ribs; (bottom left) square duct with triangular
ribs; (bottom right) square duct with square ribs. The heated wall is located at the top of each
section. (Courtesy R. Issa.)

When ribs are present, these vortices sit close to the top of the rib but on the
side close to the lateral wall. (They are rounder with the triangular and square
ribs.) Hence they are more distant than in the heated flat-wall case, reducing
their mutual interaction, which results in less hot fluid being pumped away
from the wall. Thus, the temperature gradient at the wall and the mean heat
flux are intensified by as much as 15% for some shapes of ribs.

7.7.3 Spatially growing turbulence through a straight duct

In Salinas-Vazquez and Métais’s [251] work, square ducts with a prescribed
temperature at each wall were considered. These boundary conditions for
the temperature are compatible with periodic boundary conditions in the
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Figure 7.43. Numerical upstream configuration for the spatially developing duct.

streamwise direction. However, in many industrial applications, a given heat
flux is actually imposed at the heated wall and the turbulent flow is no longer
periodic in the x direction, owing to the continuous energy increase along
this direction. One then has to deal with spatially developing turbulent flows,
which require a more complex prescription of inflow and outflow boundary
conditions (see [240]). The Mach number is still 0.5 and the bulk-velocity-
based Reynolds number is 6,000. Fully turbulent inlet boundary conditions
are provided at each time step by a LES of a duct with all walls at tempera-
ture 7y,. This longitudinally periodic duct (called a temporal duct) is linked
to the spatially growing duct through the characteristic boundary conditions
proposed in [240] (see Figure 7.43). The size of the computational domain is
31Dh x Dh x Dh (where Dh is the duct hydraulic diameter) for the spatial
duct and 6.4Dh x Dh x Dh for the temporal duct. The corresponding grid-
point numbers are, respectively, 318 x 50 x 50 and 64 x 50 x 50. As shown
in [251] for the periodic case, the heating significantly influences the topology
ofthe turbulent structures. From Eq. (7.54), the temperature increase induces a
global enhancement of the viscous unit, since py, and 7y, are going to decrease.
In fact, the near-wall structures such as the low- and high-speed streaks and
the associated ejections will keep their size in wall units and hence grow in
physical units.!> The size of the ejections becomes such that they concentrate
near the middle plane of the duct. Similar changes are observed in the spatially
growing duct. The advantage of this simulation is its ability to visualize the
progressive change of the flow structures near the heated wall. The increase
in size of the streaky structures is clearly observed.

15 Notice that in the compressible channel at constant wall temperature just studied, the wall
unit did decrease, whereas the wall structures kept their size in physical units.
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Figure 7.44. Spatially developing heated duct. (Top) fluctuating streamwise velocity near the
hot wall; (middle) fluctuating temperature near the hot wall; (bottom) three-dimensional view of
isosurface Q = 0.5(U,/Dp)? close to the hot walll.

Figure 7.44 shows a view of fluctuating temperature and streamwise veloc-
ity in a plane parallel to the hot wall and close to it (at distance y/D; = 0.01)
as well as a three-dimensional isosurface of Q in the duct seen from above the
heated wall. Positive streamwise velocity fluctuations correspond to sweeps
toward the wall and negative fluctuations to ejections. The former transport
cold fluid toward the wall, where they bring negative temperature fluctuations;
the latter eject hot fluid into the colder outer region, bringing positive temper-
ature fluctuations. Near the inlet, the streaks display their characteristic long
and narrow shape. From x /D) ~ 6.0 the streaks are longer and wider than
in the inlet region. At the exit the streaks are so wide that only two or three
are visible at the end of the duct. Quasi-longitudinal vortices identified with
positive Q are very numerous at the inlet, but their number decreases with the
streamwise direction as do the velocity and temperature streaks. They con-
centrate around the middle wall plane, and their longitudinal length is higher
close to the outlet. The vortices observed between x/D;, = 12 and 30 in the
vicinity of the middle wall plane (bottom of Figure 7.44) resemble vortices
found in the fully developed heated duct. Figure 7.45 shows the instantaneous
temperature field contours and the instantaneous transverse velocity vectors
at four different x planes. The evolution of the big ejection is strongly cor-
related to the increase of the instantaneous secondary flow size. Close to the
inlet region, the secondary-flow pattern near the hot wall is similar to the one
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Figure 7.45. Instantaneous temperature and transverse velocity vector fields for x/Dp = 10,
20, 25, and 30. The heated wall is located at the bottom of the section. (Courtesy J. Hébrard.)

on the other three walls. Small ejections are observed on the heated wall.
However, close to the outlet, a large structure forms that ejects hot fluid from
the heated wall.

7.7.4 Curved ducts of square section

Curved ducts are very often encountered in industry, and it is crucial to pre-
dict the effects that the curvature may induce on heat exchanges. Various
experimental and theoretical studies on turbulent flows in curved ducts have
been performed (see, e.g., Hunt and Joubert [128], Hoffman et al. [125], and
Saric [256]). It is well known that a concave wall is responsible for Gortler
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Dh

3 Dh 6 Dh 6 Dh
Figure 7.46. Curved duct configuration.

instability, which eventually leads to the formation of Gortler vortices. We
have already seen examples of these vortices for Hermes rear-flap simula-
tions.!® However, few numerical works based on LES of a curved duct are
available — particularly when the duct is square.

We present LES in a curved duct without heating or when one wall is
heated. Details can be found in [214]. The S-shaped duct has also been com-
puted by Hébrard et al. [119]. Here we consider a curved duct of square
cross section consisting of a curved part of angle 30° and a curvature radius
of 10D;,. The curved part is surrounded by two straight parts: The inflow part
has a length of 4 D, and the outflow part has a length of 6 D), (see Figure 7.46).
The Mach and Reynolds numbers are still 0.5 and 6,000, respectively. As was
done previously, a fully turbulent flow is obtained at the entry of the duct by
injecting the fields issued from a periodic duct computation.

We recall that, in a straight duct of square section, the intensity of the
transverse secondary flow reaches a magnitude of about 2% of the mean bulk
velocity. In a curved, nonheated duct, the secondary flow is greatly enhanced,
reaching 20% of the main flow. As shown in Figure 7.47(b), the destabilization
occurs on the concave wall, but the pressure gradient between the inner and
outer curved walls implies a displacement of the longitudinal vortices toward
the convex side. Two intense Gortler vortices are clearly visible with positive
O isosurfaces. The cross section shown in Figure 7.47(a) reveals the strong
amplification of the secondary flow close to the convex wall near the end of
the curved part of the duct.

Animation 7-10 gives more details. One sees in particular the system of
longitudinal vortices that detaches from the upper convex wall and joins the
system of Gortler vortices generated by the lower wall. Animation 7-11 shows
the same LES vortices in the vicinity of the concave boundary. Animation 7-12

16 And also for the recirculating flow in a cavity.
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Figure 7.47. Mean results for a nonheated curved channel. (a) Secondary flow after the cur-
vature. (b) Three-dimensional isosurfaces of Q = 0.3. (Courtesy C. Miinch.)

presents the same view when the concave wall is heated. In this case vortices
become bigger and more intense. This is a fine example of the advanced
heat-transfer simulations that can be achieved by LES.

7.8 Animations

Animation 7-1: LES of'a Mach 0.3 boundary layer spatially developing on a
flat plate, showing successively the transition during K-transition (isosurfaces
of u', ,, .) and isosurfaces of u' and low pressure when turbulence has
developed. (Film 7-1.mpg; courtesy E. Briand.)

Animation 7-2: The beginning is devoted to the Mach 0.3 boundary layer
LES with isosurfaces of ' and O during, respectively, K- and H-transition.
For K-transition, two Q thresholds are compared (0.01 and 0.02). Then u’
and Q are shown in the developed region, traveling in a frame moving with
velocity 0.6U. The rest of the movie concerns models of wave packets. (Film
7-2.mpg; courtesy E. Briand.)

Animation 7-3: LES of the Mach 0.3 channel with presentation of Q isosur-
faces and w, isolines on the walls. A perspective view of the flow above the
flat (top left) and ribbed (bottom right) walls is shown first. Then a view from
above is shown. (Film 7-3.mpg; courtesy Y. Dubief.)

Animation 7-4: LES of an obstacle with a wall effect. [sosurfaces of positive
O (green) and positive (red) and negative (blue) longitudinal vorticity are
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presented. The observer is rotating, and the movie starts with a side view
where the flow goes from left to right. (Film 7-4.mpg; courtesy P. Begou.)

Animation 7-5: LES of turbulence in a channel at Mach 0.33 above “high”
riblets showing cross section of longitudinal vorticity (red, positive; blue,
negative). (Film 7-5.mpg; courtesy G. Hauét.)

Animation 7-6: Same as Animation 7-5 except for a “great” riblet. (Film
7-6.mpg; courtesy G. Hauét.)

Animation 7-7: “High” riblet at Mach 0.33, showing cross sections of positive
(yellow) and negative (blue) u’ in a plane located 10 wall units away from the
riblet peaks. (Film 7-7.mpg; courtesy G. Hauét.)

Animation 7-8: Same as Animation 7-7 except for the “great” riblet. (Film
7-8.mpg; courtesy G. Hauét.)

Animation 7-9: Positive Q isosurfaces in the LES of a transonic flow above
a rectangular cavity. Shown are, successively, a perspective view from up-
stream (with the flow going from left to right), a side view, and a view from
downstream. (Film 7-9.mpg; courtesy Y. Dubief.)

Animation 7-10: LES of a curved square isothermal channel at Mach 0.5
showing a global view of the positive Q isosurfaces colored by local longitu-
dinal vorticity. (Film 7-10.mpg; courtesy C. Miinch.)

Animation 7-11: LES of a curved square isothermal channel at Mach 0.5
showing a perspective view of the positive Q isosurfaces colored by local
longitudinal vorticity close to the concave wall. (Film 7-11.mpg; courtesy C.
Miinch.)

Animation 7-12: LES of a curved square channel at Mach 0.5 heated on the
concave wall showing a perspective view of the positive O isosurfaces colored
by local longitudinal vorticity close to the same boundary. (Film 7-12.mpg;
courtesy C. Miinch.)



8 Geophysical fluid dynamics

As already stressed, the large-eddy simulation (LES) concept was developed
by the meteorologists Smagorinsky, Lilly, and Deardorff. In fact, geophysical
and astrophysical fluid dynamics contain an innumerable list of processes
(generally three-dimensional) that can be understood experimentally only via
laboratory and in situ experiments and numerically mostly by LES. We recall,
for instance, that the Taylor-microscale-based Reynolds number for small-
scale atmospheric turbulence is larger than 10, and thus implementation
of DNS does not seem feasible in this case even with the unprecedented
development of computers.! As far as Earth is concerned, these processes are
part of the extraordinarily important issue of climate modeling and prediction
involving a very complex system that dynamically and thermodynamically
couples the atmosphere (with water vapor, clouds, and hail), the oceans (with
salt and plankton), and ice for periods of time from seconds to hundreds of
thousands of years. The issue of global warming, which requires our being
able to predict the evolution, under the action of greenhouse-effect gases,
of Earth temperature (in the average or in certain particular zones), is vital
for the survival of populations living close to the oceans and seas. Indeed,
global warming induces ice melt,> which implies a sea-level elevation. It also
increases evaporation, resulting in heavy rains and floods.

We first provide in this chapter a general introduction to geophysical fluid
dynamics (GFD). Then we will concentrate on two problems for which LES
and DNS provide significant information. The first is the effect of a fixed
solid-body rotation on a constant-density free-shear or wall-bounded flow.
The second is the generation of storms through baroclinic instability in a
dry atmosphere. A third problem that will not be discussed here is oceanic

! Such simulations would become practical through the use of quantic computers with binary
information carried out by atoms.
2 Ice melt has been observed everywhere from glaciers over many years to polar ice fields.

185



186

LARGE-EDDY SIMULATIONS OF TURBULENCE

deep-water formation, the essential link of the oceanic conveyor belt in the
northern Atlantic, where the Gulf Stream water becomes saltier® and sinks by
gravity. Large-eddy simulations related to the latter problem may be found in
Padilla-Barbosa and Métais [228].

8.1 Introduction to geophysical fluid dynamics

8.1.1 Rossby number

We first consider a flow that rotates with a constant angular velocity 2 = f/2.
We work in the rotating frame. Let U be a characteristic relative velocity of
the fluid and let L be a characteristic scale of motion. We define the Rossby
number as the ratio of characteristic inertial over Coriolis accelerations in the
Navier—Stokes equations, which yields

U

=0
When Ro > 1, rotation is negligible. When Ro < 1, rotation dominates.
In a rotating flow on a sphere at a latitude ¢, the flow is assumed to be

Ro 8.1

approximately equivalent to a flow rotating around the local vertical axis with
an angular velocity Q2 sin¢ defined by the projection of the rotation vector
€2 on the local vertical. Then the Rossby number is still defined by Eq. (8.1)
with f = 2Q sin ¢ being the Coriolis parameter.

Here, we will take horizontal quantities for U and L.

8.1.2 Earth atmosphere

Large atmospheric scales

The large scales are called synoptic with horizontal wavelengths of the order
of, or larger than, several hundred kilometers. Because the effective thickness
of the atmosphere is of the order of 15 km,* these motions are on a shal-
low layer and are quasi-two-dimensional on the Earth’s sphere. In medium
latitudes, synoptic motions correspond to quasi-horizontal vortices rotating
around zones of high or low pressure, respectively, in the anticyclonic or cy-
clonic sense.” This circulation is driven by the geostrophic balance between
the pressure gradient and the Coriolis force in the motion equations. Cyclonic
vortices are more energetic than anticyclonic ones. The associated Rossby

3 The water becomes saltier because a part of it is transformed into ice, which is fresh.

* This height corresponds to about 80% of the atmospheric mass. Above this level air is more
and more rarefied.

3 Cyclonic means here the same sense of rotation as that of Earth: anticlockwise in the Northern
Hemisphere and clockwise in the Southern Hemisphere.
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number (U = 30 m/s, L = 1,000 km, f = 10™%) is 0.3. The origin of these
vortices is the baroclinic instability of easterly jet streams. These are encoun-
tered by planes while flying at a 10-km elevation. The jet streams arise from
the so-called thermal-wind equation. It results from combining the horizontal
geostrophic balance and the vertical hydrostatic balance between the pressure
gradient and gravity (see Lesieur [170] for more details). The thermal-wind
intensity is proportional to the horizontal north—south temperature gradient.
Its regular intensity is 30 m/s, but it may reach much higher values, such as
the 110 m/s recorded in the days before the great storms of December 26 and
28, 1999, in Europe.

Tropical cyclones

At lower latitudes, tropical cyclones also correspond to the production of cy-
clonic vortices, but the Rossby numbers are larger than in the former case.
The main effect here is the substantial evaporation of water at the sea sur-
face if its temperature is greater than 26 °C. The water vapor thus produced
rises owing to thermal convection and condenses higher up because of lower
temperatures with the latent heat released being converted into horizontal ki-
netic energy, which drives the system. With U = 60 m/s, L = 200 km, and
f ~ 10~* sin 23°/sin 45°, one gets Ro ~ 5.

Hadley cells and trade winds

The strong thermal convection above the ocean in the intertropical zone is
responsible for the formation of two cells on both sides of the equator called
Hadley cells: Warm air rises in the equatorial region, travels to higher latitudes
where it cools, and then descends at the Tropics. While descending, it deviates
westward because of the Coriolis force, giving rise to trade winds. Weaker
cells rotating in the opposite sense, called Ferrel cells, are also observed.
This is in fact a year—time-averaged view. Seasonal variations of Hadley cells
lead to the monsoon phenomenon, where trade winds cross the equator and
change sign, owing to the opposite direction of the Coriolis force. When these
phenomena occur in a continent bordered to the west by an ocean, the monsoon
is accompanied by heavy rains.

Ozone hole

Let us mention the existence of Arctic and Antarctic circumpolar vortices.
These are cyclonic. Like the jet streams, they obey the thermal-wind equa-
tion. The north—south temperature gradient is very important at the poles
because of the existence of ice. Therefore the Antarctic circumpolar vortex
is particularly intense. It is within this vortex that the seasonal phenomenon
known as the “ozone hole” occurs, which is generally explained by the action
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of chlorofluorocarbon (CFC) gases released at medium latitudes. These CFCs
rise in the atmosphere to the stratosphere (which is very stable from a thermal
point of view with a permanent inversion) and then travel by quasi-horizontal
turbulent diffusion everywhere — particularly to the southern pole. For reasons
still unclear they can cross the border of the vortex (although it is very well
marked) and penetrate inside. Ozone destruction occurs at the beginning of
austral spring (end of September) through complex mechanisms that are far
from being understood. This phenomenon is particularly marked since 1980.
Because ozone in the stratosphere protects us from ultraviolet radiation com-
ing from the sun, drastic international measures have been taken to forbid
the production and use of CFC. However, the southern ozone hole does not
show any tendency to disappear. There is also now a weaker Arctic ozone hole
during spring.

Mesoscale and small-scale meteorology

This scale involves wavelengths ranging from 10~ m (the Kolmogorov scale)
to several tenths of kilometers. These motions are strongly three-dimensional.
They are affected by thermal stratification and sometimes rotation. Thermal
stratification may be stable in inversion zones or convectively unstable (in
thunderstorms or tornadoes®). Durable inversion layers are often observed
above cities located in troughs or surrounded by mountains, such as Grenoble,
Los Angeles, or Mexico City, and are responsible for substantial industrial
and car pollution. In this context, an interesting unstationary RANS has been
carried out by Kenjeres and Hanjalic [140]. Let us mention also the LES of
Fallon et al. [90] using the SSF model of a stably stratified flow passing a
straight backstep.

In an inversion situation, wind crossing a mountain is going to give rise
to internal gravity waves called lee waves, the breakup of which is an impor-
tant source of turbulence. Because these waves propagate upward, they are
responsible for the so-called clear-air turbulence met by planes while passing
above mountains at elevations of the order of 10 km. Finally, the atmosphere
in contact with the ground gives rise to a turbulent boundary layer affected by
rotation. It is a turbulent Ekman layer, whose typical height is 1 km; again, it
may be strongly felt during the landing of a plane.

8.1.3 Oceanic circulation

Large-scale circulation
Oceanic circulation at planetary scales is forced by winds. Trade winds, in par-
ticular, entrain surface water westward. In the northern Atlantic for instance,

% Let us evaluate the Rossby number of a developed tornado at medium latitude: Taking
U =60m/sand L = 1 km, we have Ro = 600.
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recirculation of the north-equatorial current within the Gulf of Mexico creates
the Gulf Stream. Because the dominant winds at higher latitudes and close
to the ocean are mainly westerly,’ this yields the formation of a large anticy-
clonic recirculation cell characterized by a warm current rising on the western
border of the basin, then crossing it up to the eastern border, and then going
down to the equator. In the northern Pacific, the equivalent of the Gulf Stream
is the Kuroshivo, and the current traveling to the equator is the California
current. The latter is characterized by upwellings of cold, deep water, as the
Coriolis force diverts the warm surface water entrained by the wind to the
open sea; this water, then, by continuity, has to be replaced by deep water.
Upwelling regions are also, because of the strong horizontal temperature gra-
dients involved, subjected to baroclinic instability with production of oceanic
vortices. Let us mention in this respect the LES of Tseng and Ferziger [282],
who look at the effect of coastal shape on vortices generated by upwellings.
The equivalent of the California current in the southern Pacific is the cold
Humboldt current traveling to the equator along the coast of Peru. Cold up-
welling currents are extremely rich in fish because they contain more oxygen.
Upwelling exists also off the western coast of France, Portugal, and Affica,
but the most famous of all is the Humboldt current, whose anomaly called
El Nifo is characterized by a reversal of the current, which becomes warm,
causing fish to disappear with deleterious consequences for affected national
economies. The quasi-period of this unpredictable event is between 2 and
4 years. El Nifio seems to be associated with a sort of nonlinear oscillation
of the coupled atmosphere—ocean system and has been observed for many
centuries. The problem is that it seems to become more and more intense —
perhaps as a consequence of global warming.

A few words on the aforementioned oceanic conveyor belt are in order.
Currently, an important warming of the northen Atlantic ocean is observed
with the threat of significant ice melt. This may reduce the deep-water forma-
tion in such a way that the Gulf Stream would no longer descend. However,
we recall that the engine of the oceanic system is made of trade winds, which
rather than being reduced by global warming, would be amplified because
they result from thermal convection. So the Gulf Stream would certainly not
disappear, but it might, through continuity, have to find other routes than the
present one.

Mesoscale and small-scale oceanography

Oceanic currents are subjected to various instabilities responsible for the for-
mation of eddies of scale 50-100 km. Taking U = 10 cm/s and L = 50 km,
we find that oceanic vortices at medium latitudes have a Rossby number of
0.02 — about ten times smaller than in the synoptic atmosphere. This is of the

7 The winds are westerly because of both Ferrel cells and jet streams.
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same order as Jupiter’s Great Red Spot: Here one takes U = 100 m/s, L =
20,000 km, and ¢ = 45°. Jupiter rotates faster than Earth with an approximate
period of 10 h. We have f = 10~* x 24/10, which gives Ro ~ 0.02, of the
same order as oceanic vortices (see Somméria [272]).

Because the error in making the geostrophic-balance assumption is pro-
portional to the Rossby number, this calculation shows that Earth’s oceanic
vortices or Jupiter’s vortices are closer to geostrophic balance than to a syn-
optic atmosphere.

At smaller scales, the ocean may be the seat of intense three-dimensional
turbulence, resulting, for instance, from the breakup of internal-gravity waves
on the coast. Turbulent Ekman layers exist also close to the bottom and at the
surface where the wind blows.

8.1.4 Internal geophysics

Turbulence exists in the strongly heated liquid metal of Earth’s outer core.
Here, the Rossby number may be calculated as follows at medium latitudes
(Cardin [36]). One takes U = 1073 m/s, and L = 1,000 km, which gives
Ro = 1073, These flows are, because of their extreme slowness, the most rota-
tion dominated of all those already considered up to now. They are electrically
conductive and obey magnetohydrodynamic (MHD) equations. Furthermore
they are subjected to a strong internal convection, resulting in quasi-two-
dimensional vortices of axis parallel to Earth’s axis of rotation.

8.2 Effects of spanwise rotation on shear flows
of constant density

We study now with the aid of DNS or LES shear flows of uniform density
rotating about a spanwise axis. The flow is assumed periodic in the streamwise
x and spanwise z directions with i(y, t) being the longitudinal velocity at
y averaged in the streamwise and spanwise directions. Here v and w are
the velocity components along y and z, respectively. We define now a local
vorticity-based Rossby number

1 di
as the ratio of the spanwise relative vorticity to the entrainment vorticity.
Regions with a positive (or negative) local Rossby number will be called
cyclonic (or anticyclonic). Recall that the absolute vorticity vector @, = @ +
2Qz satisfies Helmholtz’s theorem in its conditions of applicability, which
stresses that absolute-vortex elements follow the fluid parcels they contain.
The Rossby number Ro is the minimal value of Ro(y, 0).
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Figure 8.1. Rotating channel of uniform density. Eventual local Rossby number distribution
in the DNS (left) and LES (right). From top to bottom, minimal Rossby numbers of —18, —6,
and —2. (From Lamballais et al. [154].)

A pioneering linear-stability analysis of the problem in the inviscid case
and for longitudinal modes (x-independent) was carried out by Pedley [233].
Details are given in Lesieur ([170], p. 73) with analogies to centrifugal in-
stabilities. Pedley [233] shows that a necessary and sufficient condition for
instability is that Ro(y, 0) < —1 somewhere in the flow.

8.2.1 Rotating channel

As in the nonrotating uniform-density case, we still consider constant-flow-
rate DNS or LES for which we take as initial conditions a randomly perturbed
parabolic profile. The axis y = 0 is the channel centerline. Thus Ro(y, 0) is
linear and antisymmetric with respect to y. We choose the direction of $ such
that the region of the channel y > 0 is initially cyclonic; y < 0 is anticyclonic.
The minimum value Ro"”) = Ro(—h, 0) is always negative. Lezius and John-
ston [180] have shown that such a flow is inviscidly unstable if Ro") < —1.
This is in fact equivalent in this case to Pedley’s [233] result.

Figure 8.1, taken from Lamballais et al. [154], shows the distribution of
the local Rossby number in DNS and LES as a function of Ro”). The DNS is
carried out at a Reynolds number based on the bulk velocity and 2/ of 5,000.
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The LES is done for the same conditions as in the nonrotating LES using
the spectral-dynamic model presented in Chapter 5 at a Reynolds number of
14,000. We see that a Ro(y) = —1 plateau forms for the three rotation rates
in the LES case and for the last two for the DNS, yielding

du =2Q, (8.3)

dy
which corresponds to a zero spanwise absolute vorticity. This result was
shown experimentally by Johnston et al. [137]. Numerically, one should quote
the DNS studies of Kim [141], Tafti and Vanka [277], Kristoffersen and
Andersson [148], Nakabayashi and Kitoh [217], and the LES of Piomelli
and Liu [237] using Smagorinsky’s dynamic model. But the simulations of
Lamballais et al. [ 154] investigate lower Rossby number moduli (which means
faster rotation rates) than do these authors. The DNS results of Lamballais
are presented in Lesieur ([170], pp. 432-433) with pictures of the vorticity
modulus compared with the nonrotating case and also of the mean veloc-
ity profiles. Lesieur notes: “It is clear that the flow is quasi-laminar on the
cyclonic side, while hairpins on the anticyclonic side are more and more in-
clined with respect to the wall as rotation is increased. It was also checked that
longitudinal velocity fluctuations on this side are reduced when the Rossby
number is increased, and that the corresponding streaks have disappeared at
Ro® = —-2”

This order of magnitude of Rossby number (< —1) is what we call here
“moderate” rotation. As stressed by Lezius and Johnston [180], there is a
lower initial Rossby number (inferior to —1) under which the flow is stable
again and that decreases as the Reynolds number is augmented.

If one further increases the rotation rate,® there will be an interesting
crossover at Ro") = —1. Indeed, the case Ro'") > —1 (“fast” rotation) is to-
tally different because it is stable and two-dimensionalizing from the point of
view of the aforementioned instability. However, Lamballais et al. [152] have
shown it may be subject to the growth of two-dimensional TS waves, as is
the case in particular for a DNS at Ro"”) = —0.1: TS waves reach a nonlinear
saturated state, and the flow is composed of purely two-dimensional span-
wise vortices of alternate-sign vorticity on the sides of the channel. The two
rows of vortices on each wall are out of phase. This is analogous to a purely
two-dimensional solution studied by Jimenez [134].

Finally, we remind the reader that, for the channel, Ro® cannot exceed
zero by definition.

8 For the channel, Ro") is always negative, and thus increasing it corresponds to an increase
in the rotation rate.
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Figure 8.2. Anticyclonic rotating mixing ° _o
layer showing time evolution of the local

Rossby number in the DNS of Métais et al.

[206]. (Courtesy J. Fluid Mech.)

8.2.2 Rotating free-shear layers

Strong analogies exist with mixing layers and wakes rotating about a span-
wise axis, where Pedley’s analysis is also valid in the inviscid case. This was
complemented by the viscous linear-instability studies of Yanase et al. [294].
They show that the KH instability is suppressed and replaced by the “shear-
Coriolis” instability, a purely longitudinal instability, if Ro" is, again, strictly
lower than —1. For the channel, there is a minimum lower bound for Ro") in
this instability, which decreases as the Reynolds number increases. [soampli-
fication rates for the mixing layer taken from this study are given in Lesieur
([170], p. 424).

Rotating mixing layer
For Ro"”) < —1,and if the Reynolds number is high enough, the shear-Coriolis
instability manifests itself. The DNS and LES of Flores [96] and Métais
et al. [206] show then that in these conditions in the anticyclonic regions there
is a stretching of intense purely longitudinal alternate vortices of absolute
vorticity, which are such that the mean spanwise absolute vorticity becomes
zero and the Rossby number becomes equal to —1 over a large fraction of the
region (see Lesieur [170], pp. 430—431). This is clear from Figure 8.2, which
shows the time evolution of the local Rossby number in a rotating mixing-layer
DNS carried out by Métais et al. [206]. The Rossby number peaks initially,
following the initial vorticity distribution. Then the amplitude of the peak
decreases while the latter widens. At ¢ = 26.8, a plateau close to —1 (slightly
higher in fact) forms; this plateau is still there at = 35.7.

Now we increase Ro”). There is again a crossover at Ro”) = —1, above
which the KH instability occurs, with a strong two-dimensionalization: Helical
pairing is suppressed, as well as hairpin stretching between KH vortices.
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The structure of the mixing layer is purely two-dimensional. Here, and in
contrast to the channel, Ro”) may become positive. In this case the mixing layer
has become cyclonic, and increasing Ro'”) corresponds now to a reduction
of the rotation rate. Our DNS and LES (see also Lesieur et al. [166]) do
show that it remains very two dimensional up to Ro® of the order of 10.
It is clear that if the Rossby number is increased and goes to infinity, three-
dimensional instabilities of the type found in the nonrotating case will develop
again.

Rotating wake
The DNS and LES of Flores [96] and Métais et al. [206], as well as unpublished
calculations done in Grenoble, enable us to stress the following conclusions for
the wake: For Ro) < —1, as in the mixing layer, and if the Reynolds number
is high enough, the shear-Coriolis instability takes hold. Because the wake has
both cyclonic and anticyclonic sides, the Karman street is deeply modified.
On the cyclonic side, one observes a two-dimensional row of vortices with-
out secondary hairpin-vortex stretching. On the anticyclonic side, however,
the anticyclonic Karman vortices no longer exist. They are replaced by the
same longitudinal vortices as for the anticyclonic mixing layer at Ro) < —1
discussed earlier, with the local Rossby number becoming equal to —1 in
this range. This is clear from Figure 8.3, taken from a rotating-wake DNS
at Ro') = —2.5 and showing at times ¢ = 0 and ¢ = 48.5 the local Rossby
number profiles. Here U is the initial maximum deficit velocity and »,, is a
typical initial wake width. One sees how the initial antisymmetric Gaussian
Rossby distribution is transformed, with on the anticyclonic side, a plateau
slightly higher than —1, as in the anticyclonic mixing layer.

The crossover at Ro") = —1 exists again. Above, this, the wake becomes
a purely two-dimensional Karman street, and there is no great difference in
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the wake structure between Ro'”) = —1 and Ro®) = —0.1. As for the channel,
Ro® cannot exceed zero.

Universality of free-shear layers

These results demonstrate a very interesting universality of free or wall-
bounded shear layers rotating about a spanwise axis as far as the three follow-
ing points are concerned:

o There is a crossover Rossby number Ro) = —1 separating a structure
dominated by Pedley’s [233] longitudinal mode if the Reynolds number is
high enough from a two-dimensional structure.

e Under the crossover, there is a region of space where one observes the
establishment of a Ro(y) = —1 plateau. This point, well predicted by
LES and DNS, still poses severe problems to one-point closure models
(see, e.g., Nagano and Hattori [216]).

¢ In this region, the flow evolves into a set of purely longitudinal absolute
vortices.

This last point has been demonstrated numerically. The explanation of the sec-
ond point provided by many authors for the channel case’ is based on the fact
that turbulence evolves toward a marginally stable state from the point of view
of linear-stability theory. Another explanation is given by Lesieur et al. [173]
in terms of nonlinear reorientation of absolute vortices. They propose an exact
analysis based on Euler equations, where x-independence'? is assumed. The
evolution equations (following the motion) of the absolute vorticity @, of com-
ponents w; = dw/dy — dv/dz, wy = du/dz, and w3 + f = —du/dy + [
can be written for this x-independent solution as

D_., = .
Ewa =FQw, (8.4)
with
0 f 0
ay 0z
0 a
o v ow
ay 0z

° Results obtained in Grenoble for the rotating free-shear flows are new and have not been
commented on by other people.

19 Indeed, we have seen that the linear-stability analysis shows that this longitudinal mode
dominates shear instabilities in this case.
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0 f 0
Fi=lo o ol: (8.6)

0 0 o)

and

0 0 0
Fa=|o v & (8.7)

dy 0z

Jw Jw

ay 0z

The action of F; upon @, is to leave its projection @, on the yz plane un-
changed and to stretch w; as

Da)l
R ) 8.8
D S (8.8)
‘We have also
D_. = __

The tensor F, is in fact the velocity-gradient tensor in the yz plane, and we can
apply the same analysis as in Chapter 2. Indeed, during the linear stage of evo-
lution, the DNS studies by Métais et al. [206] studies of an anticyclonic mix-
ing layer of initial Rossby number of —5 show the growth of the longitudinal
mode with absolute vortex filaments in phase and inclined approximately 45°
above the horizontal plane. This produces concentrations of longitudinal vor-
ticity in the yz plane. Let us assume that a nonlinear regime is reached at which
longitudinal vorticity concentrations are strong enough to form vortices,
whose core is “elliptic” in the sense that the eigenvalues of F5 (or —F;|")
are purely imaginary. Rotation of &, about X (in the sense of the sign of the
longitudinal vorticity) will therefore dominate deformation in Eq. (8.9), im-
plying an increase of the spanwise absolute-vorticity component (which is
negative). The Rossby number (which was lower than —1) will increase also.
We have here for the absolute-vorticity vector an interesting mechanism of
longitudinal self-reorientation possible only in a nonlinear regime.
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GFD applications
These results have important applications in geophysical and astrophysical
fluid dynamics when density differences may be neglected.

In the mesoscale atmosphere of Earth, typical Rossby number moduli are
larger than one. Then anticyclonic vortices should be destroyed and cyclonic
ones should be two-dimensionalized. This is observed in the wake (visualized
by clouds) of some islands, which display very asymmetric Karman streets.

In the ocean, cyclonic and anticyclonic mesoscale eddies, which do not
result from baroclinic instability, should be two-dimensionalized. This might
be the case in particular for detached vortices behind capes. An example is the
Strait of Gibraltar separating the Atlantic Ocean from the Mediterranean Sea.
The Atlantic is much fresher than the Mediterranean.!! Therefore, Mediter-
ranean water will descend into the Atlantic through Gibraltar, whereas Atlantic
water will enter the Mediterranean, remaining at the surface. The coast of
Morocco will act as a backward-facing step, and vortices will be shed on the
north coast of Algeria. These vortices have been observed. They are anticy-
clonic, but since the associated Rossby numbers are very low they should be
two-dimensionalized.

On Jupiter, where there is no evidence of baroclinic instability, vortices
should be two-dimensionalized regardless of their sign. This is the case in
particular of the Great Red Spot, which is anticyclonic.

8.3 Storm formation

As already stressed, storm formation results from baroclinic instability of a
jet stream in thermal-wind balance resulting from a horizontal north—south
temperature gradient. The simplest model for such a study is the Eady model.
Notice that we are going to change the notation with respect to the preced-
ing section: x, y, and z will be, respectively, the zonal, meridional, and vertical
directions, and u, v, and w are the velocity components in these directions.

8.3.1 Eady model

Details of the Eady model are given in Drazin and Reid [74]. One considers a
channel rotating about the vertical axis z with an angular velocity f/2 studied
within the Boussinesq approximation. The flow is stably stratified along the
vertical and the horizontal with constant potential temperature gradients. The
channel has a width L and a depth H. Periodicity is assumed in the x direction.
Free-slip boundary conditions on the lateral walls and upper lid are taken
with a no-slip condition at the ground. One assumes initially a thermal-wind

! Indeed, the latter is very warm and undergoes strong evaporation.
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Figure 8.4. Baroclinic jet configuration.
(Courtesy E. Garnier.)

SOUTH

balance corresponding to an (x, y)-independent zonal westerly velocity rising
linearly from zero at the ground to U on the lid. Let Ro = U/(fL) be the
Rossby number, and let /' = U/(N H) be the Froude number, where N is the
Brunt—Vaisila frequency (see details in Lesieur [170], p. 49). A linear-stability
analysis shows that instability occurs when Ro/F < 0.76.

8.3.2 Baroclinic jet

The configuration of this simulation (DNS or LES) is displayed in Figure 8.4.
It is a baroclinic jet in a channel. One still works within the Boussinesq
approximation.

As in the Eady model, there is initially a positive constant vertical tem-
perature gradient. The difference from the Eady model is the presence of a
hyperbolic-tangent velocity profile of width § in the meridional direction.!?
The initial velocity field is in thermal-wind balance and corresponds to a zonal
jet varying linearly with the vertical from — /" at the ground (z = 0) to +/ on
the lid (z = H). We stress that a Galilean transformation of velocity ¥ would
yield a zero velocity at the ground, as in reality, and a velocity 2" at the lid. The
Rossby and Froude numbers are, respectively, V' /f6 and V'/N H. The DNS
carried out by Garnier et al. [106] allowed (by cancellation of the nonlinear
terms) a linear-stability analysis to be made. It shows that instability occurs
for Ro/F < 1.5. Afterward, simulations are carried out for Ro/F = 0.5 cor-
responding to a physically realistic situation in Earth’s atmosphere. The DNS
of Figure 8.5 shows the formation of quasi-two-dimensional cyclonic vortices
and weaker anticyclonic vortices. The figure also displays the production of
intense cyclonic vertical vorticity within the fronts separating the cold fluid
to the north from the warm fluid to the south at the ground and under the

12 This width is defined exactly in the same way as for the vorticity thickness in a mixing layer.
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Figure 8.5. DNS of the baroclinic jet. Light gray, cyclonic relative vertical vorticity; black,
anticyclonic vorticity. (Courtesy E. Garnier.)

lid. Such a production may be explained as follows: One can show within
the framework of Boussinesq approximation that relative vertical vorticity w
satisfies

Dw ow ow ow

— =(w+ f)—t+o— +wr—, 8.10

oy @t N tei o (8.10)
where w; and w, are here the components of @ along x and y, respectively. It
was shown by Garnier et al. [106] in their simulations that the last two terms
on the r.h.s. of Eq. (8.10) can be neglected, and the equation reduces to

D ow
Ew~(f+w)a—z. (8.11)

One understands thus how warm fluid at the ground in contact with the cold
fluid will be obliged to rise, yielding dw/dz > 0 on the r.h.s. of Eq. (8.11).
Here f is positive, and the Rossby-number modulus of the calculation (=
|w|/f)islow enoughthat f + w > 0and w will grow. Starting with a weak |w|,
there will be growth of cyclonic vorticity and a damping of the anticyclonic-
vorticity modulus. The same thing occurs under the lid, where cold fluid will
sink under warm fluid with again dw/dz > 0.

This is illustrated by Animation 8-1, which is another DNS done by Garnier
at Rossby and Froude numbers both equal to 0.1. It presents the vertical
relative vorticity (pink positive, cyclonic; blue negative, anticyclonic). First,
we can see the double Bickley jet at the ground and on the lid. Afterward the
progressive formation of quasi-two-dimensional cyclonic vortices is observed
with formation of intense cyclonic vorticity braids along the fronts.
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Figure 8.6. Time evolution in two days of the ground temperature in the baroclinic jet LES.
Time increase as indicated by the letters. (Courtesy E. Garnier.)

Garnier et al. [106] carried out LES studies using the subgrid model com-
bining the SF model and a hyperviscosity. A primary instability occurs as in
the DNS. Then there is a secondary instability of the cold front, with produc-
tion of two secondary vortices in two days (see Figure 8.6). Their vorticity is
of the order of 2 in 3 times that of the primary vortices. Garnier et al. also
show that the secondary instability is associated with regions where the ratio
of local Rossby to local over Froude numbers is smaller than 1.5, the critical
value from the point of view of their linear-stability study.

As stressed in Lesieur et al. [175], there are strong analogies with storms
that struck Europe on December 26 and 28, 1999 (see Figures 8.7 and 8.8).

The situation on December 25 (Figure 8.7) indicates a large cyclonic per-
turbation arriving over Scandinavia after having crossed Great Britain. The
corresponding winds, of the order of 30 m/s, are typical of “regular” storms
issuing from a primary baroclinic instability that often cross the channel sea. It
is clear that France is split by the cold front at Brittany. On Christmas evening
in 1999 a warm wind coming from the south was blowing above Grenoble,
with temperatures of the order of 15 °C, which is very unusual for the season.
This wind was induced by the vortex sitting above Scandinavia. The December
26 storm (Figure 8.8) is a small vortex of ~400-km diameter, which formed
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Figure 8.7. Satellite view of Europe on December 25 at 18h. (Courtesy Dundee University.)
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Figure 8.8. Satellite view of Europe on December 26 at 8h. (Courtesy Dundee University.)
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above Brittany and, according to Météo-France, crossed France from west
to east at a speed of 28 m/s. If one assumes that the relative velocity at the
border of this vortex was 228 m/s, this would induce winds of velocity 56 m/s
to the south of the vortex and weak winds to the north. Because there was a
second vortex of the same kind two days later, these storms present analogies
with the secondary vortices observed in the preceding baroclinic jet LES.
Such velocities were totally unexpected, and roofs and electric and telephone
lines were ill-designed to withstand the forces they exerted. Recall that forces
exerted by wind on a body are proportional to the squared velocity when the
wake of the body is turbulent. Our constructions could resist winds ~30 m/s
but not 60 m/s, which exert forces four times larger.

Among the differences between the baroclinic-jet simulations and the De-
cember 1999 severe storms, Lesieur et al. [175] note pressure troughs mea-
sured in the storms, which were not observed in the simulations.

One of the questions posed by Lesieur et al. [175] concerns the require-
ments needed by a numerical weather-forecast code to capture analogous
phenomena correctly and to predict the severe vertical vortex stretching in
the thermal fronts. One may wonder whether the hydrostatic approximation is
sufficient and if Boussinesq- or anelastic-type approximations of the Navier—
Stokes equation should not be preferred. Gravity waves should be filtered
out in some way. Meshes smaller than 50 km should be used horizontally,
and numerical schemes in the vertical direction should not be too diffusive.
The use of LES seems compulsory to obtain secondary instabilities because
the latter are dissipated by molecular viscosity in the baroclinic-jet DNS.
The question of data assimilation to define the proper initial field is another
controversial topic. Developing forecasting tools able to predict the wind
velocities associated with such severe storms accurately is of essential impor-
tance for populations living in midlatitude regions.

It is difficult to know whether these events are associated with a warming
climate. Climatologists stress that polar regions warm faster than equatorial
ones, leading to meridional temperature gradients, which should become in the
mean weaker rather than stronger, as they certainly were during the December
1999 storms.

8.4 Animations

Animation 8-1: DNS of a baroclic jet at Rossby and Froude numbers
of 0.1, showing isosurfaces of vertical relative vorticity (pink, positive; blue,
negative). (Film 8-1.mpg; courtesy E. Garnier.)
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